锂离子混合电容器由于兼备锂离子电池和超级电容器的优势,即较高的能量密度和功率密度,而成为当前能量存储体系的研究热点。本工作合成了具有三维花状微纳结构的正交相五氧化二铌(T-Nb_2O_5),并将其与活性炭(AC)相匹配,设计出一种新型的...锂离子混合电容器由于兼备锂离子电池和超级电容器的优势,即较高的能量密度和功率密度,而成为当前能量存储体系的研究热点。本工作合成了具有三维花状微纳结构的正交相五氧化二铌(T-Nb_2O_5),并将其与活性炭(AC)相匹配,设计出一种新型的T-Nb_2O_5/AC锂离子混合电容器。循环伏安和恒电流充放电的测试结果表明该锂离子混合电容器具有较好的电化学性能,如在碳酸酯类的有机电解液中,工作电压可达到3.0 V;在100 m A·g^(-1)的电流密度下,电容器的比能量和比功率密度可达到53.79 Wh·kg^(-1)和294 W·kg^(-1);在200 m A·g^(-1)的电流密度下,经过1000次充放电循环后,该电容器的比能量保持率为73%。由此可见,本工作开发的T-Nb_2O_5/AC锂离子混合电容器将在高功率的储能设备中有很好地应用前景。展开更多
由于正交相五氧化二铌(T-Nb_(2)O_(5))为ReO_(3)型层状结构,锂、钠离子可以在其(001)平面快速脱嵌,而在[001]方向的传输一般较难。本研究通过原位透射电子显微镜(Transmission Electron Microscope,TEM)方法研究钠在T-Nb_(2)O_(5)纳米片...由于正交相五氧化二铌(T-Nb_(2)O_(5))为ReO_(3)型层状结构,锂、钠离子可以在其(001)平面快速脱嵌,而在[001]方向的传输一般较难。本研究通过原位透射电子显微镜(Transmission Electron Microscope,TEM)方法研究钠在T-Nb_(2)O_(5)纳米片(001)面内及[001]方向的钠离子电化学嵌入行为,发现由于纳米片晶体存在大量的位错和畴界,钠离子可通过这些缺陷穿越(001)面扩散,并进而在深层的(001)面内快速扩散。同时,本研究还发现刚合成的T-Nb_(2)O_(5)纳米片在[001]方向上存在调制结构,存在交替分布的压应变和张应变区域,而钠离子的嵌入可以调节这些应变分布。展开更多
文摘锂离子混合电容器由于兼备锂离子电池和超级电容器的优势,即较高的能量密度和功率密度,而成为当前能量存储体系的研究热点。本工作合成了具有三维花状微纳结构的正交相五氧化二铌(T-Nb_2O_5),并将其与活性炭(AC)相匹配,设计出一种新型的T-Nb_2O_5/AC锂离子混合电容器。循环伏安和恒电流充放电的测试结果表明该锂离子混合电容器具有较好的电化学性能,如在碳酸酯类的有机电解液中,工作电压可达到3.0 V;在100 m A·g^(-1)的电流密度下,电容器的比能量和比功率密度可达到53.79 Wh·kg^(-1)和294 W·kg^(-1);在200 m A·g^(-1)的电流密度下,经过1000次充放电循环后,该电容器的比能量保持率为73%。由此可见,本工作开发的T-Nb_2O_5/AC锂离子混合电容器将在高功率的储能设备中有很好地应用前景。
文摘由于正交相五氧化二铌(T-Nb_(2)O_(5))为ReO_(3)型层状结构,锂、钠离子可以在其(001)平面快速脱嵌,而在[001]方向的传输一般较难。本研究通过原位透射电子显微镜(Transmission Electron Microscope,TEM)方法研究钠在T-Nb_(2)O_(5)纳米片(001)面内及[001]方向的钠离子电化学嵌入行为,发现由于纳米片晶体存在大量的位错和畴界,钠离子可通过这些缺陷穿越(001)面扩散,并进而在深层的(001)面内快速扩散。同时,本研究还发现刚合成的T-Nb_(2)O_(5)纳米片在[001]方向上存在调制结构,存在交替分布的压应变和张应变区域,而钠离子的嵌入可以调节这些应变分布。