针对标准体硅在CMOS和PD SOI CMOS两种工艺下的nMOSFETs,研究了沟道长度和宽度缩减对热载流子效应的影响。实验结果表明,在两种工艺下,热载流子的退化均随着沟道长度的减小而增强;然而,宽度的减小对两种工艺热载流子退化的影响却截然不...针对标准体硅在CMOS和PD SOI CMOS两种工艺下的nMOSFETs,研究了沟道长度和宽度缩减对热载流子效应的影响。实验结果表明,在两种工艺下,热载流子的退化均随着沟道长度的减小而增强;然而,宽度的减小对两种工艺热载流子退化的影响却截然不同:体硅工艺的热载流子退化随宽度的减小而增强,SOI工艺的热载流子退化随宽度的减小而减小。基于界面态对热载流子效应的影响深入分析了长度减小导致两种工艺下热载流子退化均加重的原因;同时基于边缘电场分布对热载流子效应的影响解释了宽度减小导致两种工艺下热载流子退化规律截然相反的现象。研究结果对于实际深亚微米工艺下,集成电路设计中器件工艺尺寸和版图结构的选择具有一定指导意义。展开更多
Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studi...Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied. We quantify the contributions of different current components in a SET current pulse, and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both ]30-nm and 90-nm technologies. The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified. The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature, which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor.展开更多
文摘针对标准体硅在CMOS和PD SOI CMOS两种工艺下的nMOSFETs,研究了沟道长度和宽度缩减对热载流子效应的影响。实验结果表明,在两种工艺下,热载流子的退化均随着沟道长度的减小而增强;然而,宽度的减小对两种工艺热载流子退化的影响却截然不同:体硅工艺的热载流子退化随宽度的减小而增强,SOI工艺的热载流子退化随宽度的减小而减小。基于界面态对热载流子效应的影响深入分析了长度减小导致两种工艺下热载流子退化均加重的原因;同时基于边缘电场分布对热载流子效应的影响解释了宽度减小导致两种工艺下热载流子退化规律截然相反的现象。研究结果对于实际深亚微米工艺下,集成电路设计中器件工艺尺寸和版图结构的选择具有一定指导意义。
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60836004, 61076025, and 61006070)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20104307120006)
文摘Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied. We quantify the contributions of different current components in a SET current pulse, and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both ]30-nm and 90-nm technologies. The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified. The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature, which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor.