期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于区分性准则的Bottleneck特征及其在LVCSR中的应用
被引量:
2
1
作者
刘迪源
郭武
《数据采集与处理》
CSCD
北大核心
2016年第2期331-337,共7页
基于深层神经网络中间层的Bottleneck(BN)特征由于可以采用传统的混合高斯模型-隐马尔可夫建模(Gaussian mixture model-hidden Markov model,GMM-HMM),在大规模连续语音识别中获得了广泛的应用。为了提取区分性的BN特征,本文提出在使...
基于深层神经网络中间层的Bottleneck(BN)特征由于可以采用传统的混合高斯模型-隐马尔可夫建模(Gaussian mixture model-hidden Markov model,GMM-HMM),在大规模连续语音识别中获得了广泛的应用。为了提取区分性的BN特征,本文提出在使用传统的BN特征训练好GMM-HMM模型之后,利用最小音素错误率(Minimum phone error,MPE)准则来优化BN网络参数以及GMM-HMM模型参数。该算法相对于其他区分性训练算法而言,采用的是全部数据作为一个大的数据包,而不是小的包方式来训练深度神经网络,从而可以大大加快训练速度。实验结果表明,优化后的BN特征提取网络比传统方法能获得9%的相对词错误率下降。
展开更多
关键词
语音识别
神经网络
区分性训练
Bottleneck特征
下载PDF
职称材料
题名
基于区分性准则的Bottleneck特征及其在LVCSR中的应用
被引量:
2
1
作者
刘迪源
郭武
机构
中国科学技术大学语音及语言信息处理国家工程实验室
出处
《数据采集与处理》
CSCD
北大核心
2016年第2期331-337,共7页
文摘
基于深层神经网络中间层的Bottleneck(BN)特征由于可以采用传统的混合高斯模型-隐马尔可夫建模(Gaussian mixture model-hidden Markov model,GMM-HMM),在大规模连续语音识别中获得了广泛的应用。为了提取区分性的BN特征,本文提出在使用传统的BN特征训练好GMM-HMM模型之后,利用最小音素错误率(Minimum phone error,MPE)准则来优化BN网络参数以及GMM-HMM模型参数。该算法相对于其他区分性训练算法而言,采用的是全部数据作为一个大的数据包,而不是小的包方式来训练深度神经网络,从而可以大大加快训练速度。实验结果表明,优化后的BN特征提取网络比传统方法能获得9%的相对词错误率下降。
关键词
语音识别
神经网络
区分性训练
Bottleneck特征
Keywords
speech recognition
neural networks
discriminative training
Bottleneck feature
分类号
TN912.34 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于区分性准则的Bottleneck特征及其在LVCSR中的应用
刘迪源
郭武
《数据采集与处理》
CSCD
北大核心
2016
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部