期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于融合文本与评分的多头注意力推荐算法
1
作者 刘鑫强 李卫疆 《信息技术》 2023年第7期24-28,33,共6页
基于协同过滤模型一直被数据的稀疏性问题限制了推荐效果,诸多研究利用深度模型去挖掘评论文本中的抽象特征,但却忽略协同过滤中矩阵分解的隐向量特征。为解决上述问题,文中提出一种融合文本与评分的多头注意力推荐算法模型MTS,将矩阵... 基于协同过滤模型一直被数据的稀疏性问题限制了推荐效果,诸多研究利用深度模型去挖掘评论文本中的抽象特征,但却忽略协同过滤中矩阵分解的隐向量特征。为解决上述问题,文中提出一种融合文本与评分的多头注意力推荐算法模型MTS,将矩阵分解的隐向量特征作为多头注意力的key与CNN抽取的评论特征相结合,并计算用户与物品的相似矩阵,提取用户物品间的相互关联,最终输入FM实现特征融合并预测评分。实验表明,该模型与多个代表模型相比MAE都有较大提升,MAE的误差最大降低了22.17%。 展开更多
关键词 推荐系统 评分矩阵 评论文本 多头注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部