期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于监控视频的前景目标提取 被引量:2
1
作者 刘钱源 杨欢欢 +1 位作者 刘培鑫 张承进 《数学建模及其应用》 2018年第1期63-71,共9页
对含有动、静态背景的稳定图像处理时,对比了主成分追踪鲁棒主成分分析法(RPCA)、贝叶斯鲁棒主成分分析法(Bayesian RPCA)和高斯混合模型的鲁棒主成分分析法(MoG-RPCA),3种方法对静态背景下的前景提取都较为完整.而动态背景下只有Bayesi... 对含有动、静态背景的稳定图像处理时,对比了主成分追踪鲁棒主成分分析法(RPCA)、贝叶斯鲁棒主成分分析法(Bayesian RPCA)和高斯混合模型的鲁棒主成分分析法(MoG-RPCA),3种方法对静态背景下的前景提取都较为完整.而动态背景下只有Bayesian RPCA和MoG-RPCA提取出了完整的前景目标,但是Bayesian RPCA计算速度很慢,且不能够处理复杂噪声.所以MoG-RPCA模型更具有对复杂噪声的适应性,动、静态背景情况下均提取出精度较高的前景目标,且具有较快的计算速度.当图像不稳定时,采用改进的MoG-RPCA模型对非稳定拍摄的抖动视频进行前景目标提取,并在第197帧抖动图像中清晰地提取出显著前景目标,且运算速度较快.在为了快速找到目标出现的帧时,对高斯混合模型背景差分法进行改进,利用K-means聚类算法快速得到聚类中心点,然后作为高斯混合模型背景更新时的初始化均值参数,从而提高在复杂场景下前景目标的检测精度.对于多角度追踪任务,不同角度、近似同一地点的多个监控视频图像中前景目标的提取,可采用跨摄像头视角跟踪结果融合的方法,然后对目标进行匹配. 展开更多
关键词 前景目标提取 MoG-RPCA模型 K-means高斯混合模型 多角度追踪
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部