A fourth-order low-distortion low-pass sigma-delta (∑△) modulator is presented for micro-machined inertial sensors. The proposed single-loop single-bit feedback modulator is optimized with a feed-forward path to d...A fourth-order low-distortion low-pass sigma-delta (∑△) modulator is presented for micro-machined inertial sensors. The proposed single-loop single-bit feedback modulator is optimized with a feed-forward path to decrease the nonlinearities and power consumption. The IC is implemented in a standard 0.6 μm CMOS technology and operates at a sampling frequency of 3.846 MHz. The chip area is 2.12 mm^2 with 23 pads. The experimental results indicate a signal-to-noise ratio (SNR) of 100 dB and dynamic range (DR) of 103 dB at an oversampling rate (OSR) of 128 with the input signal amplitude of-3.88 dBFS at 9.8 kHz; the power consumption is 15 raW at a 5 V supply.展开更多
基金supported by the National Natural Science Foundation of China(No.61204121)
文摘A fourth-order low-distortion low-pass sigma-delta (∑△) modulator is presented for micro-machined inertial sensors. The proposed single-loop single-bit feedback modulator is optimized with a feed-forward path to decrease the nonlinearities and power consumption. The IC is implemented in a standard 0.6 μm CMOS technology and operates at a sampling frequency of 3.846 MHz. The chip area is 2.12 mm^2 with 23 pads. The experimental results indicate a signal-to-noise ratio (SNR) of 100 dB and dynamic range (DR) of 103 dB at an oversampling rate (OSR) of 128 with the input signal amplitude of-3.88 dBFS at 9.8 kHz; the power consumption is 15 raW at a 5 V supply.