期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Preparation and evaluation of enzyme encapsulated hydrogels(single gels and double network gels) and enzyme immobilized magnetic beads
1
作者 闵俊哲 秋本真友子 +2 位作者 李翠苓 加藤大 豊岡利正 《Journal of Chinese Pharmaceutical Sciences》 CAS 2011年第3期226-234,共9页
In the present research,enzyme encapsulated hydrogels(single gels and double network gels)and enzyme immobilized magnetic beads,which allow high-throughput screening,were fabricated and evaluated in terms of the pre... In the present research,enzyme encapsulated hydrogels(single gels and double network gels)and enzyme immobilized magnetic beads,which allow high-throughput screening,were fabricated and evaluated in terms of the preservation,precision, and repeatability of enzyme activity.The fabricated gels and magnetic beads were analyzed in a 96-well microassay plate.Trypsin was successfully encapsulated in both types of gels and immobilized to the magnetic beads.However,pepsin,either encapsulated in the gels or immobilized to the magnetic beads,could not react with its substrates.The adaptability to various enzymes (e.g.,trypsin,β-glucuronidase,and CYP1A1)in the single gels and magnetic beads was superior to that in double network gels.However,the soak out of the enzymes was observed in the single gels.The double network gels could encapsulate trypsin,whereas the fabrication of the other enzymes(e.g.β-glucuronidase,CYP1A1,and pepsin)failed because of the inactivation of the enzymes by acryl amide and ammonium peroxodisulfate,which are the components of the gel formulation. The enzyme reaction in the magnetic beads exhibited the highest efficiency among the three fabrication methods.Furthermore, the stability of the enzymes immobilized to the magnetic beads was better than that fabricated by the other methods,and the activities of trypsin andβ-glucuronidase did not decline for up to one week.In addition,in the magnetic beads,the activities of trypsin andβ-glucuronidase can be well repeated.Hence,although the adaptability of the double network gels to various enzymes is currently limited,the efficiency of the enzyme encapsulation can be improved by optimizing the formulation of acryl amide gels. 展开更多
关键词 Immobilized enzyme Encapsulated enzyme Single gel Double network gel Magnetic bead Trypsin β-Glucuronidase CYP1A1
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部