卷积神经网络是深度学习的一种高效识别方法,将卷积神经网络引入商品图像识别中,能够提高识别精度。卷积神经网络可以直接输入原始图像,以避免对图像进行复杂的预处理工作。首先介绍了卷积神经网络的各层作用,然后设计了多种基于卷积神...卷积神经网络是深度学习的一种高效识别方法,将卷积神经网络引入商品图像识别中,能够提高识别精度。卷积神经网络可以直接输入原始图像,以避免对图像进行复杂的预处理工作。首先介绍了卷积神经网络的各层作用,然后设计了多种基于卷积神经网络识别商品图像的模型,从多方面测试了卷积神经网络的分类性能。为提高训练速度,卷积层的激活函数采用线性修正函数(Rectified Linear Units,ReLU)。为确保模型的判别性,对下采样层的特征图进行局部对比度归一化,所设计的网络模型在实验中均达到90%以上的平均分类正确率。展开更多
文摘卷积神经网络是深度学习的一种高效识别方法,将卷积神经网络引入商品图像识别中,能够提高识别精度。卷积神经网络可以直接输入原始图像,以避免对图像进行复杂的预处理工作。首先介绍了卷积神经网络的各层作用,然后设计了多种基于卷积神经网络识别商品图像的模型,从多方面测试了卷积神经网络的分类性能。为提高训练速度,卷积层的激活函数采用线性修正函数(Rectified Linear Units,ReLU)。为确保模型的判别性,对下采样层的特征图进行局部对比度归一化,所设计的网络模型在实验中均达到90%以上的平均分类正确率。