期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于不同目标检测模型的胡椒园环境下胡椒果穗成熟度判别研究
1
作者 彭金莲 李奇 +3 位作者 郑兵 邓佳磊 卓书龙 季祥 《中国热带农业》 2024年第5期42-53,共12页
目前,针对胡椒智能采摘领域的研究尚属空白,精确识别胡椒果穗的成熟度是胡椒智能采摘关键技术之一。通过两条技术路线判别胡椒成熟度:一是先建立胡椒目标检测深度学习模型,再根据胡椒果穗颜色特征来判别胡椒成熟度;二是直接建立胡椒成... 目前,针对胡椒智能采摘领域的研究尚属空白,精确识别胡椒果穗的成熟度是胡椒智能采摘关键技术之一。通过两条技术路线判别胡椒成熟度:一是先建立胡椒目标检测深度学习模型,再根据胡椒果穗颜色特征来判别胡椒成熟度;二是直接建立胡椒成熟度判别深度学习模型。利用两条技术路线,采用SSD、Faster R-CNN、YOLOv5s、YOLOv5m和YOLOv8m这5种算法进行胡椒果穗成熟度判别对比。研究结果发现,基于YOLOv8m模型,第1种方法成熟度判别的准确度为94.81%,第2种方法的准确度、召回率等多项指标高达98%以上,可为胡椒智能化采摘机器人的开发提供依据。 展开更多
关键词 胡椒目标检测 卷积神经网络 胡椒采摘机器人 成熟度判别 YOLOv8m
下载PDF
数据驱动的ADS-B干扰源信号类型识别 被引量:2
2
作者 胡焱 卓书龙 司成可 《计算机与现代化》 2022年第2期19-25,共7页
传统干扰源信号类型识别方法在提取干扰信号的细微特征时,存在干扰信号调制类型分类精度低、识别效果差等缺点。对此,本文提出一种基于深度神经网络的ADS-B干扰信号调制类型识别算法。首先将ADS-B信号和干扰波形进行叠加混合,通过控制... 传统干扰源信号类型识别方法在提取干扰信号的细微特征时,存在干扰信号调制类型分类精度低、识别效果差等缺点。对此,本文提出一种基于深度神经网络的ADS-B干扰信号调制类型识别算法。首先将ADS-B信号和干扰波形进行叠加混合,通过控制矢量信号发生器(VSG)进行仿真信号发射,并在接收端进行采集;接着对接收的基带I、Q数据进行人为添加随机噪声,并据此构造各种信噪比场景下的张量训练样本数据集;最后,利用训练样本数据对本文设计的神经网络进行训练,并在样本数据集上将传统分类算法和本文所提出的神经网络算法两者的识别性能进行对比分析。实验结果表明本文所提的神经网络算法相比于现有的传统识别算法,具有更好的识别性能。 展开更多
关键词 深度学习 ADS-B 信号类型识别 卷积神经网络 残差神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部