期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种增量式本体模型与数据模式映射的图谱实例模型构建演化方法
1
作者 单中原 杨恺 +2 位作者 赵俊峰 王亚沙 徐涌鑫 《计算机科学》 CSCD 北大核心 2023年第1期18-24,共7页
在智慧城市领域中,随着信息化技术的不断深入,各信息系统产生的海量数据不断增长,这些多源异构数据之间的语义互通成为了城市智能应用开发需要解决的重要问题之一。构建知识图谱是解决数据语义互通的常用手段之一。在建立知识图谱本体... 在智慧城市领域中,随着信息化技术的不断深入,各信息系统产生的海量数据不断增长,这些多源异构数据之间的语义互通成为了城市智能应用开发需要解决的重要问题之一。构建知识图谱是解决数据语义互通的常用手段之一。在建立知识图谱本体模型后,图谱实例模型的构建演化就成为支撑基于图谱的各类应用的关键技术。为此,如何将不断更新的数据源中的知识实例尽可能自动化地扩充到知识图谱中,成为了图谱构建的首要问题。现有的一些知识实例生成工具对数据导入的支持力度不足,用户需要对源数据进行复杂的预处理,将其转化为符合平台支持的导入数据格式。这导致预处理工作量大,且不能迅速地应对数据不断更新增长的情况。由于智慧城市领域中信息系统所产生的数据多为结构化或半结构化数据,文中提出一种增量式本体模型与数据模式映射的图谱实例模型构建演化方法,面向结构化或半结构化数据生成实例,并随着数据的更新,实现图谱实例模型的增长与演化。文中方法结合机器推荐与人机协同交互设计,针对不同数据源的特征抽取知识并将其正确地映射到本体模型中的概念实体上,实现领域知识图谱实例模型的增量扩充;并通过实体对齐、关系补全等方法,支持实例模型的持续演化。文中方法在企业信息领域知识图谱的构建场景中得到了验证,通过机器推荐和不去重,实现了实例高效且准确的生成,其有效性也得到了证实。 展开更多
关键词 知识图谱 本体模型 数据模式 人机交互
下载PDF
基于智能映射推荐的知识图谱实例构建与演化方法 被引量:3
2
作者 张雅晴 单中原 +1 位作者 赵俊峰 王亚沙 《计算机科学》 CSCD 北大核心 2023年第6期142-150,共9页
随着大数据技术的深入发展,各领域产生了海量异构数据,构建知识图谱是实现异构数据语义互通的重要手段。通过将结构化数据与本体模型映射匹配来生成实例模型是图谱实例层构建常用的方法。然而,对于复杂异构的领域数据来说,现有映射式实... 随着大数据技术的深入发展,各领域产生了海量异构数据,构建知识图谱是实现异构数据语义互通的重要手段。通过将结构化数据与本体模型映射匹配来生成实例模型是图谱实例层构建常用的方法。然而,对于复杂异构的领域数据来说,现有映射式实例构建方法大多需要用户手动完成全部映射匹配,映射操作繁琐,无法进行智能匹配,费时费力且容易出错。除此之外,现有方法对实例导入后的增量更新也支持不足。针对现有模式匹配和实例构建方法的映射操作繁琐的问题,提出了基于智能映射推荐的实例构建与演化方法。其中,智能映射复用推荐机制,在用户手动映射之前进行数据模式匹配计算,对元素级相似度、表级相似度和表间传播相似度进行多级相似度综合计算,根据数据模式匹配度仲裁排序后生成推荐映射。另外,增量发现机制通过自动发现冗余实例和冲突实例,生成系统后台任务进行处理,可实现实例的高效无重复导入。在山东市政府开放数据集和深圳市医疗急救数据集上进行了实验,在映射复用推荐模块的辅助下,交互时间缩短为传统模式的约26%,字段推荐匹配准确率达到98.1%;在增量发现模块的实验中,导入了1 394万个实例节点以及2 158万条关系边所需的时间由31.21 h缩短至2.23 h,验证了智能映射复用推荐的可用性和匹配准确率,提高了实例层构建与演化的效率。 展开更多
关键词 知识图谱 模式匹配 映射复用 实例构建 图谱演化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部