期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SSD网络模型改进的水稻害虫识别方法
被引量:
24
1
作者
佘颢
吴伶
单鲁泉
《郑州大学学报(理学版)》
CAS
北大核心
2020年第3期49-54,共6页
针对目前主流的目标检测算法在虫害监控系统中识别速度慢、准确度低的问题,提出一种基于SSD网络模型的水稻害虫识别方法。该算法用表征能力更强的特征金字塔代替SSD原有的多尺度特征图,同时改进了归一化和激活函数,使得模型对小目标的...
针对目前主流的目标检测算法在虫害监控系统中识别速度慢、准确度低的问题,提出一种基于SSD网络模型的水稻害虫识别方法。该算法用表征能力更强的特征金字塔代替SSD原有的多尺度特征图,同时改进了归一化和激活函数,使得模型对小目标的识别率更高、收敛性更好,从而提高了水稻害虫的识别率与检测速度。实验表明,相比于faster R-CNN算法,基于SSD改进的水稻虫害识别方法的mAP最高提升了6.6%,其识别速度最高提升8倍。
展开更多
关键词
SSD神经网络
目标检测
数据增强
激活函数
下载PDF
职称材料
题名
基于SSD网络模型改进的水稻害虫识别方法
被引量:
24
1
作者
佘颢
吴伶
单鲁泉
机构
湖南农业大学信息与智能科学技术学院
出处
《郑州大学学报(理学版)》
CAS
北大核心
2020年第3期49-54,共6页
基金
国家自然科学基金项目(61101235)。
文摘
针对目前主流的目标检测算法在虫害监控系统中识别速度慢、准确度低的问题,提出一种基于SSD网络模型的水稻害虫识别方法。该算法用表征能力更强的特征金字塔代替SSD原有的多尺度特征图,同时改进了归一化和激活函数,使得模型对小目标的识别率更高、收敛性更好,从而提高了水稻害虫的识别率与检测速度。实验表明,相比于faster R-CNN算法,基于SSD改进的水稻虫害识别方法的mAP最高提升了6.6%,其识别速度最高提升8倍。
关键词
SSD神经网络
目标检测
数据增强
激活函数
Keywords
SSD neural network
target detection
data augmentation
activation function
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SSD网络模型改进的水稻害虫识别方法
佘颢
吴伶
单鲁泉
《郑州大学学报(理学版)》
CAS
北大核心
2020
24
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部