期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向DAG任务的分布式智能计算卸载和服务缓存联合优化
1
作者 李云 南子煜 +2 位作者 姚枝秀 夏士超 鲜永菊 《中山大学学报(自然科学版)(中英文)》 CAS 北大核心 2025年第1期71-82,共12页
建立了一种有向无环图(DAG,directed acyclic graph)任务卸载和资源优化问题,旨在应用最大可容忍时延等约束实现系统能耗最小化。考虑到网络中计算请求高度动态、完整的系统状态信息难以获取等因素,最后使用多智能体深度确定性策略梯度(... 建立了一种有向无环图(DAG,directed acyclic graph)任务卸载和资源优化问题,旨在应用最大可容忍时延等约束实现系统能耗最小化。考虑到网络中计算请求高度动态、完整的系统状态信息难以获取等因素,最后使用多智能体深度确定性策略梯度(MADDPG,multi-agent deep deterministic policy gradient)算法来探寻最优的策略。相比于现有的任务卸载算法,MADDPG算法能够降低14.2%至40.8%的系统平均能耗,并且本地缓存命中率提高3.7%至4.1%。 展开更多
关键词 移动边缘计算 多智能体深度强化学习 计算卸载 资源分配 服务缓存
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部