推荐系统是解决信息过载问题的核心。现有的推荐框架研究面临着显式反馈数据稀疏和数据预处理难等问题,特别是对新用户和新项目进行推荐的性能有待进一步提高。随着深度学习的推进,基于深度学习的推荐成为了当前的研究热点,大量的实验...推荐系统是解决信息过载问题的核心。现有的推荐框架研究面临着显式反馈数据稀疏和数据预处理难等问题,特别是对新用户和新项目进行推荐的性能有待进一步提高。随着深度学习的推进,基于深度学习的推荐成为了当前的研究热点,大量的实验证明了深度学习运用于推荐系统的有效性。文中在NCF的基础上提出了EANCF(Neural Collaborative Filtering based on Enhanced-Attention Mechanism),从隐式反馈数据的角度研究了推荐框架,利用最大池化、局部推理以及组合多种不同数据融合方式来考虑数据特征提取;同时,引入注意力机制来为网络合理地分配权重值,减少信息的损失,提升推荐的性能。最后,基于两个大型真实数据集Movielens-1m和Pinterest-20对EANCF、NCF和部分经典算法做了对比实验,并且详细地给出了EANCF框架的训练过程。实验结果表明,EANCF框架确实具有较好的推荐性能,相比于NCF框架在HR@10和NDCG@10上均有显著提升,HR@10最高提升了3.53%,NDCG@10最高提升了2.47%。展开更多
应用程序接口(Application Programming Interfaces,API)在现代软件开发中起着重要的作用,开发人员经常需要为他们的编程任务搜索合适的API。但是随着信息产业的发展,API参考文档变得越发庞大,传统的搜索方式会因为互联网上的冗余和错...应用程序接口(Application Programming Interfaces,API)在现代软件开发中起着重要的作用,开发人员经常需要为他们的编程任务搜索合适的API。但是随着信息产业的发展,API参考文档变得越发庞大,传统的搜索方式会因为互联网上的冗余和错误信息给工程师的查询带来不便。与此同时,由于编程任务的自然语言描述与API文档中的描述之间存在词汇和知识上的差距,很难找到合适的API。基于这些问题,提出一种融合领域知识的API推荐算法ARDSQ(Recommendation base on Documentation and Solved Question)。ARDSQ能够根据工程师对某个功能的自然语言描述去知识库里检索到最为贴近的API。实验表明,与两种先进的API推荐算法(BIKER,DeepAPILearning)比较,ARDSQ在推荐系统关键评价指数(Hit-n,MRR,MAP)上都有较大的优势。展开更多
交通流量信息是智能交通系统和城市计算的重要基础。交通流量数据作为新型时序数据,由于数据的采集方式和外部复杂因素的影响,使得数据缺失现象是常见且无法避免的。如何有效地挖掘交通流量数据的时空特性和数据间的关联成为了提高缺失...交通流量信息是智能交通系统和城市计算的重要基础。交通流量数据作为新型时序数据,由于数据的采集方式和外部复杂因素的影响,使得数据缺失现象是常见且无法避免的。如何有效地挖掘交通流量数据的时空特性和数据间的关联成为了提高缺失数据补全精度的关键。传统的统计学方法不能满足日益增长的数据需求,深度学习的应用推动了缺失数据的补全方法向更高的精确度发展。文中深入分析了交通流量的时间特性和空间分布,对交通流量的缺失情况进行了假设,提出了一种UMAtNet(U-net with Multi-View Attention Mechanisms)交通流量补全模型。该模型将短期的、趋势的、周期的时间数据与空间数据融合,同时采用不同的数据相关性测量方法,融合了一种多视图注意力机制,能够优化模型对缺失部分数据空间相关性的影响。为了验证模型的有效性,文中使用北京交通轨迹开源数据集进行实验,并在实验中详细地分析了模型各部分和损失函数对补全精度的影响,实验结果表明,UMAtNet和相应组件融合能进一步提高补全精度。展开更多
文摘推荐系统是解决信息过载问题的核心。现有的推荐框架研究面临着显式反馈数据稀疏和数据预处理难等问题,特别是对新用户和新项目进行推荐的性能有待进一步提高。随着深度学习的推进,基于深度学习的推荐成为了当前的研究热点,大量的实验证明了深度学习运用于推荐系统的有效性。文中在NCF的基础上提出了EANCF(Neural Collaborative Filtering based on Enhanced-Attention Mechanism),从隐式反馈数据的角度研究了推荐框架,利用最大池化、局部推理以及组合多种不同数据融合方式来考虑数据特征提取;同时,引入注意力机制来为网络合理地分配权重值,减少信息的损失,提升推荐的性能。最后,基于两个大型真实数据集Movielens-1m和Pinterest-20对EANCF、NCF和部分经典算法做了对比实验,并且详细地给出了EANCF框架的训练过程。实验结果表明,EANCF框架确实具有较好的推荐性能,相比于NCF框架在HR@10和NDCG@10上均有显著提升,HR@10最高提升了3.53%,NDCG@10最高提升了2.47%。
文摘应用程序接口(Application Programming Interfaces,API)在现代软件开发中起着重要的作用,开发人员经常需要为他们的编程任务搜索合适的API。但是随着信息产业的发展,API参考文档变得越发庞大,传统的搜索方式会因为互联网上的冗余和错误信息给工程师的查询带来不便。与此同时,由于编程任务的自然语言描述与API文档中的描述之间存在词汇和知识上的差距,很难找到合适的API。基于这些问题,提出一种融合领域知识的API推荐算法ARDSQ(Recommendation base on Documentation and Solved Question)。ARDSQ能够根据工程师对某个功能的自然语言描述去知识库里检索到最为贴近的API。实验表明,与两种先进的API推荐算法(BIKER,DeepAPILearning)比较,ARDSQ在推荐系统关键评价指数(Hit-n,MRR,MAP)上都有较大的优势。
文摘交通流量信息是智能交通系统和城市计算的重要基础。交通流量数据作为新型时序数据,由于数据的采集方式和外部复杂因素的影响,使得数据缺失现象是常见且无法避免的。如何有效地挖掘交通流量数据的时空特性和数据间的关联成为了提高缺失数据补全精度的关键。传统的统计学方法不能满足日益增长的数据需求,深度学习的应用推动了缺失数据的补全方法向更高的精确度发展。文中深入分析了交通流量的时间特性和空间分布,对交通流量的缺失情况进行了假设,提出了一种UMAtNet(U-net with Multi-View Attention Mechanisms)交通流量补全模型。该模型将短期的、趋势的、周期的时间数据与空间数据融合,同时采用不同的数据相关性测量方法,融合了一种多视图注意力机制,能够优化模型对缺失部分数据空间相关性的影响。为了验证模型的有效性,文中使用北京交通轨迹开源数据集进行实验,并在实验中详细地分析了模型各部分和损失函数对补全精度的影响,实验结果表明,UMAtNet和相应组件融合能进一步提高补全精度。