期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
类脑学习型自动驾驶决控系统的关键技术 被引量:3
1
作者 李升波 占国建 +6 位作者 蒋宇轩 兰志前 张宇航 邹文俊 陈晨 成波 李克强 《汽车工程》 EI CSCD 北大核心 2023年第9期1499-1515,共17页
作为高级别自动驾驶的下一代技术方向,类脑学习以深度神经网络为策略载体,以强化学习为训练手段,通过与环境的交互探索实现策略的自我进化,最终获得从环境状态到执行动作的最优映射。目前,类脑学习方法主要用于自动驾驶的决策与控制功... 作为高级别自动驾驶的下一代技术方向,类脑学习以深度神经网络为策略载体,以强化学习为训练手段,通过与环境的交互探索实现策略的自我进化,最终获得从环境状态到执行动作的最优映射。目前,类脑学习方法主要用于自动驾驶的决策与控制功能设计,它的关键技术包括:界定策略设计的系统框架、支持交互训练的仿真平台、决定策略输入的状态表征、定义策略目标的评价指标以及驱动策略更新的训练算法。本文重点梳理了自动驾驶决策控制的发展脉络,包括两类模块化架构(分层式和集成式)和3种技术方案(专家规则型、监督学习型和类脑学习型);概述了当前主流的自动驾驶仿真平台;分析了类脑决控的3类环境状态表征方法(目标式、特征式和组合式);同时介绍了自动驾驶汽车的五维度性能评价指标(安全性、合规性、舒适性、通畅性与经济性);然后详述了用于车云协同训练的典型强化学习算法及其应用现状;最后总结了类脑自动驾驶技术的问题挑战与发展趋势。 展开更多
关键词 智能网联汽车 车路云协同 类脑学习 自主决策 运动控制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部