期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CNN的住宅平面图元素识别与布局语义分析 被引量:2
1
作者 张蔚 王腾 +4 位作者 卢政达 杨思宇 孟维亮 郭建伟 张晓鹏 《中国体视学与图像分析》 2020年第2期174-182,共9页
建筑平面图分析是模式识别和图像处理领域的重要研究课题,但是现有的平面图分析方法未能有效检测平面图中的语义信息,不利于建筑设计的智能化。针对该问题,本文提出了一种新的基于卷积神经网络CNN的住宅平面图元素识别与布局语义分析的... 建筑平面图分析是模式识别和图像处理领域的重要研究课题,但是现有的平面图分析方法未能有效检测平面图中的语义信息,不利于建筑设计的智能化。针对该问题,本文提出了一种新的基于卷积神经网络CNN的住宅平面图元素识别与布局语义分析的算法,该算法首先通过一个联合卷积神经网络同时识别平面图中的住宅图元与文本字符,然后通过后处理步骤再对平面图元素识别结果进行优化,并结合文本信息提取平面图中的语义信息与空间布局。实验结果表明,本文提出的平面图识别算法与其他方法相比,图元素检测结果更优,提取的房间语义信息更加准确。 展开更多
关键词 卷积神经网络 平面图识别 空间布局 语义分割
下载PDF
RC-Net:Row and Column Network with Text Feature for Parsing Floor Plan Images
2
作者 王腾 孟维亮 +3 位作者 卢政达 郭建伟 肖俊 张晓鹏 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第3期526-539,共14页
The popularity of online home design and floor plan customization has been steadily increasing. However, the manual conversion of floor plan images from books or paper materials into electronic resources can be a chal... The popularity of online home design and floor plan customization has been steadily increasing. However, the manual conversion of floor plan images from books or paper materials into electronic resources can be a challenging task due to the vast amount of historical data available. By leveraging neural networks to identify and parse floor plans, the process of converting these images into electronic materials can be significantly streamlined. In this paper, we present a novel learning framework for automatically parsing floor plan images. Our key insight is that the room type text is very common and crucial in floor plan images as it identifies the important semantic information of the corresponding room. However, this clue is rarely considered in previous learning-based methods. In contrast, we propose the Row and Column network (RC-Net) for recognizing floor plan elements by integrating the text feature. Specifically, we add the text feature branch in the network to extract text features corresponding to the room type for the guidance of room type predictions. More importantly, we formulate the Row and Column constraint module (RC constraint module) to share and constrain features across the entire row and column of the feature maps to ensure that only one type is predicted in each room as much as possible, making the segmentation boundaries between different rooms more regular and cleaner. Extensive experiments on three benchmark datasets validate that our framework substantially outperforms other state-of-the-art approaches in terms of the metrics of FWIoU, mACC and mIoU. 展开更多
关键词 floor plan understanding text feature Row and Column(RC)constraint module Row and Column network(RC-Net)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部