Calcium-release-activated calcium(CARC)channels are one of the major pathways of calcium entry in non-excitable cells.Despite a decade or two of research,its regulatory mechanism is not yet thoroughly understood.The s...Calcium-release-activated calcium(CARC)channels are one of the major pathways of calcium entry in non-excitable cells.Despite a decade or two of research,its regulatory mechanism is not yet thoroughly understood.The slow progress is due to the complexity of its pores(i.e.,Orai)on one hand and the difficulty in capturing its regulatory complex on the other hand.As a result,possible gating mechanisms have often been speculated by exploring the structure and properties of constitutive open mutants.However,there is much debate about how they can truly reflect the gating of CRAC channels under physiological conditions.In the present study,we combined molecular dynamics simulations with free energy calculations to study three dOrai mutants(G170P,H206A,and P288A),and further calculated their current-voltage curves.Results show that these constructs adopt different approaches to maintain their conductive state.Meanwhile they have unique pore structures and distinctive rectification properties and ion selectivity for cations compared to wild-type pores.We conclude that although the mutants may partially capture the gating motion characteristics of wild-type pores,the information obtained from these mutants is likely not a true reflection of CRAC channel gating under physiological conditions.展开更多
Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model describe...Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these pro- cesses. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the con- tinuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecu- lar systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress.展开更多
基金supported by the National Natural Science Foundation of China(No.21773115,No.21833002,No.11771435,and No.22073110)the Natural Science Foundation of Jiangsu Province(No.BK20190056)the Fundamental Research Funds for the Central Universities(021514380018)。
文摘Calcium-release-activated calcium(CARC)channels are one of the major pathways of calcium entry in non-excitable cells.Despite a decade or two of research,its regulatory mechanism is not yet thoroughly understood.The slow progress is due to the complexity of its pores(i.e.,Orai)on one hand and the difficulty in capturing its regulatory complex on the other hand.As a result,possible gating mechanisms have often been speculated by exploring the structure and properties of constitutive open mutants.However,there is much debate about how they can truly reflect the gating of CRAC channels under physiological conditions.In the present study,we combined molecular dynamics simulations with free energy calculations to study three dOrai mutants(G170P,H206A,and P288A),and further calculated their current-voltage curves.Results show that these constructs adopt different approaches to maintain their conductive state.Meanwhile they have unique pore structures and distinctive rectification properties and ion selectivity for cations compared to wild-type pores.We conclude that although the mutants may partially capture the gating motion characteristics of wild-type pores,the information obtained from these mutants is likely not a true reflection of CRAC channel gating under physiological conditions.
基金supported by the National Natural Science Foundation of China(Grant No.91230106)the Chinese Academy of Sciences Program for Cross&Cooperative Team of the Science&Technology Innovation
文摘Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these pro- cesses. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the con- tinuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecu- lar systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress.