Multiple morphologies of colloidal perovskite nanocrystals(NCs)diversify their optical and electronic properties.Among them,the linear absorption cross-section(σ)is a primary parameter to determine their intrinsic ph...Multiple morphologies of colloidal perovskite nanocrystals(NCs)diversify their optical and electronic properties.Among them,the linear absorption cross-section(σ)is a primary parameter to determine their intrinsic photophysical features,and consequently,application potential.Herein,three morphologies of all-inorganic hybrid colloidal perovskite CsPbBr_(3)NCs,nanocubes(NBs),nanoplatelets(NLs),and nanowires(NWs),were targeted,and their linearσvalues were obtained through femtosecond transient absorption(TA)spectroscopy analysis.At high excitation energy well above the bandgap,theσper particle of all CsPbBr3 NCs linearly increased with the particle volume(VNC)regardless of the morphology with the value ofσ400=9.45×10^(4)cm^(−1)×VNC(cm^(2)).Density functional theory(DFT)calculation confirmed the negligible influence of shapes on the optical selection rules.The Einstein spontaneous emission coefficients calculated from theσvalues define the intrinsic radiative recombination rate.However,reduced size dependence is observed when the excitation energy is close to the bandgap(i.e.,at 460 nm)with the value ofσ460=2.82×10^(8)cm0.65×(VNC)0.45(cm^(2)).This should be ascribed to the discrete energy levels as well as lower density of states close to the band edge for perovskite NCs.These results provide in-depth insight into the optical characteristics for perovskite NCs.展开更多
基金supported by the National Natural Science Foundation of China (NSFC, U1862111)China Scholarship Council (201706990062)+4 种基金Independent Research Fund Denmark-Nature Sciences (DFF-7014-00302)Independent Research Fund Denmark-Sapere Aude starting grant (7026-00037A)Swedish Research Council VR starting grant (2017-05337), grants VR2018-06011, and VR201805090the Research Fund for international Young Scientists from NSFC, China (21950410515)Swedish Energy Agency
文摘Multiple morphologies of colloidal perovskite nanocrystals(NCs)diversify their optical and electronic properties.Among them,the linear absorption cross-section(σ)is a primary parameter to determine their intrinsic photophysical features,and consequently,application potential.Herein,three morphologies of all-inorganic hybrid colloidal perovskite CsPbBr_(3)NCs,nanocubes(NBs),nanoplatelets(NLs),and nanowires(NWs),were targeted,and their linearσvalues were obtained through femtosecond transient absorption(TA)spectroscopy analysis.At high excitation energy well above the bandgap,theσper particle of all CsPbBr3 NCs linearly increased with the particle volume(VNC)regardless of the morphology with the value ofσ400=9.45×10^(4)cm^(−1)×VNC(cm^(2)).Density functional theory(DFT)calculation confirmed the negligible influence of shapes on the optical selection rules.The Einstein spontaneous emission coefficients calculated from theσvalues define the intrinsic radiative recombination rate.However,reduced size dependence is observed when the excitation energy is close to the bandgap(i.e.,at 460 nm)with the value ofσ460=2.82×10^(8)cm0.65×(VNC)0.45(cm^(2)).This should be ascribed to the discrete energy levels as well as lower density of states close to the band edge for perovskite NCs.These results provide in-depth insight into the optical characteristics for perovskite NCs.