期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向乳腺超声的跨模态注意力网络
1
作者 古云豪 龚勋 周鸿 《人工智能科学与工程》 2023年第9期48-56,共9页
B型超声和超声造影是乳腺诊断中最常见的多模态数据,克服现有研究中广泛存在的肿瘤区域标注难、模态间关系剥离难、模态融合特征冗余的问题,能有效提升联合模态乳腺肿瘤诊断的准确率。该文提出了一个面向乳腺超声的跨模态注意力网络。... B型超声和超声造影是乳腺诊断中最常见的多模态数据,克服现有研究中广泛存在的肿瘤区域标注难、模态间关系剥离难、模态融合特征冗余的问题,能有效提升联合模态乳腺肿瘤诊断的准确率。该文提出了一个面向乳腺超声的跨模态注意力网络。该网络以双分支为基础结构。堆叠双模态数据分支能隐式地建立模态间的关系,同时提取单双模态数据特征。超声造影分支在缺乏手工标注的情况下,利用跨模态注意力模块,关注时空上的造影特征。最后利用压缩通道融合子网将两个分支融合,最大程度利用特征并降低模态融合特征冗余。在乳腺超声数据集BUS_Dataset上的实验表明,该网络优于现有乳腺肿瘤诊断方法。通过多项指标分析,该方法对乳腺肿瘤诊断具有较强的指导意义。 展开更多
关键词 乳腺超声 肿瘤分类 多模态 模态间关系 特征冗余 注意力机制 双分支网络 融合子网
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部