The collective motion of rounded squares with different comer-roundness ζ is studied by molecular dynamlcs (MD) simulation in this work. Three types of translational collective motion pattern are observed, includin...The collective motion of rounded squares with different comer-roundness ζ is studied by molecular dynamlcs (MD) simulation in this work. Three types of translational collective motion pattern are observed, including', gliding, hopping and a mixture of gliding and hopping. Quantitatively, the dynamics of each observed ordered phase is characterized by both mean square displacement and van Hove functions for both translation and rotation. The effect of corner-roundness on the dynamics is further studied by comparing the dynamics of the rhombic crystal phases folmed by different comer-.rounded particles at a same surface fraction. The results show that as ζ increases from 0.286 to 0.667, the translational collective motion of particles changes from a gliding-dominant pattern to a hopping-dominant patte;n, whereas the rotational motion pattern is hopping-like and does not change in its type, but the rotational hopping becomes much more frequent as increases (i.e., as particles become more rounded). A simple geometrical model is proposed to explain the trend of gliding motion observed in MD simulations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21573159 and 21621004)
文摘The collective motion of rounded squares with different comer-roundness ζ is studied by molecular dynamlcs (MD) simulation in this work. Three types of translational collective motion pattern are observed, including', gliding, hopping and a mixture of gliding and hopping. Quantitatively, the dynamics of each observed ordered phase is characterized by both mean square displacement and van Hove functions for both translation and rotation. The effect of corner-roundness on the dynamics is further studied by comparing the dynamics of the rhombic crystal phases folmed by different comer-.rounded particles at a same surface fraction. The results show that as ζ increases from 0.286 to 0.667, the translational collective motion of particles changes from a gliding-dominant pattern to a hopping-dominant patte;n, whereas the rotational motion pattern is hopping-like and does not change in its type, but the rotational hopping becomes much more frequent as increases (i.e., as particles become more rounded). A simple geometrical model is proposed to explain the trend of gliding motion observed in MD simulations.