Electric vehicles(EVs)are expected to be key nodes connecting transportation-electricity-communication networks.Advanced automotive electronics technologies enhance EVs’perception,computing,and communication capacity...Electric vehicles(EVs)are expected to be key nodes connecting transportation-electricity-communication networks.Advanced automotive electronics technologies enhance EVs’perception,computing,and communication capacity,which in turn can boost the operational efficiency of intelligent transportation systems(ITSs).EVs couple the ITS to the power system,providing a promising solution to charging congestion and transformer overload via navigation and forecasting approaches.This study proposes a privacy-preserving EV charging situation awareness framework and method to forecast the ultra-short-term load of charging stations.The proposed method only relies on public information from commercial service providers.In the case study,data are powered by the Baidu LBS cloud and EV-SGCC platform,and the experiment is conducted within an area of Pudong New District in Shanghai.Based on the results,the charging load of charging stations can be adequately forecasted more than 1 min ahead with low communication and computing power requirements.This research provides the basis for further studies on operation optimization and electricity market transaction of charging stations.展开更多
基金the National Natural Science Founda-tion of China(Nos.52077139 and 52167014)the Science and Technology Project of State Grid Corporation of China(No.52094021000F)the Shanghai Sailing Program(No.21YF1408600)。
文摘Electric vehicles(EVs)are expected to be key nodes connecting transportation-electricity-communication networks.Advanced automotive electronics technologies enhance EVs’perception,computing,and communication capacity,which in turn can boost the operational efficiency of intelligent transportation systems(ITSs).EVs couple the ITS to the power system,providing a promising solution to charging congestion and transformer overload via navigation and forecasting approaches.This study proposes a privacy-preserving EV charging situation awareness framework and method to forecast the ultra-short-term load of charging stations.The proposed method only relies on public information from commercial service providers.In the case study,data are powered by the Baidu LBS cloud and EV-SGCC platform,and the experiment is conducted within an area of Pudong New District in Shanghai.Based on the results,the charging load of charging stations can be adequately forecasted more than 1 min ahead with low communication and computing power requirements.This research provides the basis for further studies on operation optimization and electricity market transaction of charging stations.