期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于WGAN-GP和Mean Teacher的WiFi使能跨域人体行为识别
1
作者 史心玥 夏文超 +3 位作者 赵海涛 杨丽花 阮欣雨 常天水 《无线电通信技术》 2024年第6期1192-1199,共8页
人体行为识别(Human Activity Recognition,HAR)是当前众多研究工作的基石,对于推动人机交互和智能数字化转型具有巨大潜力。由于目标域样本较难采集,现有方法在跨域识别方面表现不佳。为解决这一问题,提出一种新的WiFi使能跨域HAR方法,... 人体行为识别(Human Activity Recognition,HAR)是当前众多研究工作的基石,对于推动人机交互和智能数字化转型具有巨大潜力。由于目标域样本较难采集,现有方法在跨域识别方面表现不佳。为解决这一问题,提出一种新的WiFi使能跨域HAR方法,从WiFi信号中获取信道状态信息(Channel State Information,CSI)并转化为图像,在基于Wasserstein距离和梯度的生成对抗网络(Wasserstein Generative Adversarial Network with Gradient Penalty,WGAN-GP)中引入双判别器,通过与源域样本和单目标域样本特征联合对抗,生成同时带有双域特征的虚拟样本。该方法还结合基于Mean Teacher的半监督学习设计识别分类(Recognition and Classification,RC)模块,通过对有标记样本与无标记样本分别构造损失函数,进行整体一致性损失的评估,实现对目标域样本的识别。实验结果证明了所提方法能够在减轻目标域样本采集压力的同时,实现较高的检测精度,在手势与动作的数据集上测试准确率分别达到92.71%和86.65%。 展开更多
关键词 人体行为识别 生成对抗网络 Mean Teacher模型 跨域识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部