期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于核范数正则化的抗癌药物组合协同作用预测
1
作者 史磊晶 王波 +2 位作者 张杉 任福全 李玉双 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2023年第3期634-646,共13页
目的抗癌药物联合疗法是一种很有前途的治疗策略。针对特定癌症类型,选择高度协同的药物组合,对提高癌症疗效至关重要。然而,确定具有协同作用的药物组合是一项复杂而困难的工作。本研究旨在完全以数据驱动、计算建模的方式优化抗癌药... 目的抗癌药物联合疗法是一种很有前途的治疗策略。针对特定癌症类型,选择高度协同的药物组合,对提高癌症疗效至关重要。然而,确定具有协同作用的药物组合是一项复杂而困难的工作。本研究旨在完全以数据驱动、计算建模的方式优化抗癌药物组合高通量虚拟筛选,为“旧药重新定位新组合”提供理论参考。方法借鉴矩阵填充思想,构建了基于核范数正则化的计算模型NNRM,用于预测抗癌药物组合的协同得分和协同状态。针对固定细胞系构造对称的协同得分观测矩阵;采用分折技巧将观测矩阵稀疏化;借助“交替方向乘子法”和“软阈值估计”求解模型。结果将NNRM应用于O’Neil团队发布的数据集,预测的协同得分与观测值之间的均方根误差为14.78,预测的协同状态准确率为0.94,优于随机森林(RF)和支持向量机(SVM),完全可以与深度学习模型相媲美。此外,NNRM预测的部分缺失值结果与已有研究或临床实践相吻合。结论NNRM可实现大规模、批量预测抗癌药物组合的协同作用,极大地降低了已有模型对数据的要求和计算成本,缩短了高通量虚拟筛选的测试时间,可以作为抗癌药物组合高通量虚拟筛选的可选择工具。 展开更多
关键词 抗癌药物组合 协同作用 高通量虚拟筛选 矩阵填充 核范数正则化 计算模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部