针对耗时计算目标函数的约束优化问题,提出用代理模型来代替耗时计算目标函数的方法,并结合目标函数的信息对约束个体进行选择,从而提出基于代理模型的差分进化约束优化算法。首先,采用拉丁超立方采样方法建立初始种群,用耗时计算目标...针对耗时计算目标函数的约束优化问题,提出用代理模型来代替耗时计算目标函数的方法,并结合目标函数的信息对约束个体进行选择,从而提出基于代理模型的差分进化约束优化算法。首先,采用拉丁超立方采样方法建立初始种群,用耗时计算目标函数对初始种群进行评估,并以此为样本数据建立目标函数的神经网络代理模型。然后,用差分进化方法为种群中的每一个亲本产生后代,并对后代使用代理模型进行评估,采用可行性规则来比较后代与其亲本并更新种群,根据替换机制将种群中较劣的个体替换为备用存档中较优的个体。最后,当达到最大适应度评估次数时算法停止,给出最优解。该算法与对比算法在10个测试函数上运行的结果表明,该算法得出的结果更精确。将该算法应用于工字梁优化问题的结果表明,相较于优化前的算法,该算法的适应度评估次数减少了80%;相对于FROFI(Feasibility Rule with the incorporation of Objective Function Information)算法,该算法的适应度评估次数减少了36%。运用所提算法进行优化可以有效减少调用耗时计算目标函数的次数,提升优化效率,节约计算成本。展开更多
文摘针对耗时计算目标函数的约束优化问题,提出用代理模型来代替耗时计算目标函数的方法,并结合目标函数的信息对约束个体进行选择,从而提出基于代理模型的差分进化约束优化算法。首先,采用拉丁超立方采样方法建立初始种群,用耗时计算目标函数对初始种群进行评估,并以此为样本数据建立目标函数的神经网络代理模型。然后,用差分进化方法为种群中的每一个亲本产生后代,并对后代使用代理模型进行评估,采用可行性规则来比较后代与其亲本并更新种群,根据替换机制将种群中较劣的个体替换为备用存档中较优的个体。最后,当达到最大适应度评估次数时算法停止,给出最优解。该算法与对比算法在10个测试函数上运行的结果表明,该算法得出的结果更精确。将该算法应用于工字梁优化问题的结果表明,相较于优化前的算法,该算法的适应度评估次数减少了80%;相对于FROFI(Feasibility Rule with the incorporation of Objective Function Information)算法,该算法的适应度评估次数减少了36%。运用所提算法进行优化可以有效减少调用耗时计算目标函数的次数,提升优化效率,节约计算成本。