针对BP神经网络算法对电动汽车电池荷电状态(state of charge,SOC)估算的缺陷,提出一种基于萤火虫(fireflyalgorithm,FA)神经网络的SOC估算方法。以磷酸铁锂电池为测试对象,在ARBIN公司生产的EVTS电动车动力电池测试系统装置上进行测试...针对BP神经网络算法对电动汽车电池荷电状态(state of charge,SOC)估算的缺陷,提出一种基于萤火虫(fireflyalgorithm,FA)神经网络的SOC估算方法。以磷酸铁锂电池为测试对象,在ARBIN公司生产的EVTS电动车动力电池测试系统装置上进行测试,收集锂电池的各项性能参数。采用端电压和放电电流作为输入参数,SOC作为输出参数,建立FA-BP神经网络模型,用于估算锂离子电池充放电过程中的任一状态下的SOC。仿真实验结果表明,与现有的BP神经网络估算方法相比,基于FA-BP神经网络的锂电池SOC估算方法准确度高,具备很好的实用性。展开更多
文摘针对BP神经网络算法对电动汽车电池荷电状态(state of charge,SOC)估算的缺陷,提出一种基于萤火虫(fireflyalgorithm,FA)神经网络的SOC估算方法。以磷酸铁锂电池为测试对象,在ARBIN公司生产的EVTS电动车动力电池测试系统装置上进行测试,收集锂电池的各项性能参数。采用端电压和放电电流作为输入参数,SOC作为输出参数,建立FA-BP神经网络模型,用于估算锂离子电池充放电过程中的任一状态下的SOC。仿真实验结果表明,与现有的BP神经网络估算方法相比,基于FA-BP神经网络的锂电池SOC估算方法准确度高,具备很好的实用性。