Ethylene/1-hexene was copolymerized by an unbridged zirconocene, (2-PhInd)2ZrCl2/MAO (methyl aluminoxane) at 0 °C and 50 °C respectively. High copolymerization activity and 1-hexene incorporation were observ...Ethylene/1-hexene was copolymerized by an unbridged zirconocene, (2-PhInd)2ZrCl2/MAO (methyl aluminoxane) at 0 °C and 50 °C respectively. High copolymerization activity and 1-hexene incorporation were observed at 0 °C, with the co- polymer formed having random sequence distribution and narrow molecular weight distribution. Ethylene polymerization at 50 °C showed high activity, but copolymerization at 50 °C showed much lower activity, which decreased sharply with increasing 1-hexene concentration in the monomer feed. Copolymer formed at 50 °C showed blocky sequence distribution and broad mo- lecular weight distribution. A mechanism model based on ligand rotation hindered by the propagation chain has been proposed to qualitatively explain the observed phenomena.展开更多
基金Project (Nos. 29734144 and 20274037) supported by the National Natural Science Foundation of China
文摘Ethylene/1-hexene was copolymerized by an unbridged zirconocene, (2-PhInd)2ZrCl2/MAO (methyl aluminoxane) at 0 °C and 50 °C respectively. High copolymerization activity and 1-hexene incorporation were observed at 0 °C, with the co- polymer formed having random sequence distribution and narrow molecular weight distribution. Ethylene polymerization at 50 °C showed high activity, but copolymerization at 50 °C showed much lower activity, which decreased sharply with increasing 1-hexene concentration in the monomer feed. Copolymer formed at 50 °C showed blocky sequence distribution and broad mo- lecular weight distribution. A mechanism model based on ligand rotation hindered by the propagation chain has been proposed to qualitatively explain the observed phenomena.