The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parame...The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.展开更多
In this paper, the extended symmetry of generalized variable-coeFficient Kadomtsev-Petviashvili (vcKP) equation is investigated by the extended symmetry group method with symbolic computation. Then on the basis of t...In this paper, the extended symmetry of generalized variable-coeFficient Kadomtsev-Petviashvili (vcKP) equation is investigated by the extended symmetry group method with symbolic computation. Then on the basis of the extended symmetry, we can establish relation among some different kinds of vcKP equations. Thus the exact solutions of these veKP equations can be constructed via the simple veKP equations or constant-coefficient KP equations.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10735030)National Basic Research Program of China (Grant No. 2007CB814800)+1 种基金Ningbo Natural Science Foundation (Grant No. 2008A610017)K.C. Wong Magna Fund in Ningbo University
文摘The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.
基金Supported by the National Natural Science Foundation of China under Grant No. 0735030Zhejiang Provincial Natural Science Foundations of China under Grant No. Y6090592+1 种基金National Basic Research Program of China (973 Program 2007CB814800)Ningbo Natural Science Foundation under Grant No. 2008A610017 and K.C. Wong Magna Fund in Ningbo University
文摘In this paper, the extended symmetry of generalized variable-coeFficient Kadomtsev-Petviashvili (vcKP) equation is investigated by the extended symmetry group method with symbolic computation. Then on the basis of the extended symmetry, we can establish relation among some different kinds of vcKP equations. Thus the exact solutions of these veKP equations can be constructed via the simple veKP equations or constant-coefficient KP equations.