期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于混合类别均衡损失的车型精细识别
1
作者 李熙莹 全峰玮 叶芝桧 《计算机工程与应用》 CSCD 北大核心 2023年第17期187-194,共8页
为了应对车型精细识别中数据分布不均衡导致训练中头部类别过拟合,而尾部类别被忽略的问题,提出了一种基于混合类别均衡损失的车型精细识别数据增强方法。结合Mixup数据增强方法和类别均衡损失,提出混合类别均衡交叉熵损失函数;通过均... 为了应对车型精细识别中数据分布不均衡导致训练中头部类别过拟合,而尾部类别被忽略的问题,提出了一种基于混合类别均衡损失的车型精细识别数据增强方法。结合Mixup数据增强方法和类别均衡损失,提出混合类别均衡交叉熵损失函数;通过均衡子集微调的训练策略,进一步提高了长尾分布数据的识别效果。实验结果表明,算法在Stanford Cars、CompCars、SYSU Cars数据集上的识别准确率分别比Baseline提高了1.07、0.17和1.58个百分点,有效地缓解了因车型数据不均衡带来的问题,进一步提高了车型精细识别的识别效果。其中SYSU Cars为自建数据集,由66137张车辆正脸图片构成,包含102种品牌,691种车型以及不同的光照条件(即将在OpenITS上公开)。 展开更多
关键词 车型精细识别 细粒度识别 混合类别均衡损失 长尾分布
下载PDF
基于图像的自动驾驶3D目标检测综述——基准、制约因素和误差分析 被引量:7
2
作者 李熙莹 叶芝桧 +6 位作者 韦世奎 陈泽 陈小彤 田永鸿 党建武 付树军 赵耀 《中国图象图形学报》 CSCD 北大核心 2023年第6期1709-1740,共32页
从高分辨率图像中获取周边目标的精准3D位置和尺寸信息是实现自动驾驶控制和行为决策的基础,因此基于图像的3D目标检测是自动驾驶领域中的研究热点。已有学者对该领域方法论及成果进行了比较详细的综述,但对于导致现有方法检测精度不尽... 从高分辨率图像中获取周边目标的精准3D位置和尺寸信息是实现自动驾驶控制和行为决策的基础,因此基于图像的3D目标检测是自动驾驶领域中的研究热点。已有学者对该领域方法论及成果进行了比较详细的综述,但对于导致现有方法检测精度不尽如意的制约因素未能进行深入系统的分析。考虑自动驾驶领域在工程应用方面的要求高,且现有方法以数据驱动类型为主,本文从常用数据集和评价基准、数据影响、方法论的制约因素和误差等角度,对学术界和产业界在3D目标检测方面的研究成果及行业应用进行较为系统的阐述。首先,从学术界探索成果以及自动驾驶行业的应用角度进行概要介绍。然后,从数据采集设备、数据精度和标注信息3方面详细分析总结了KITTI等4个通用数据集,并对这些数据集提出的主要评价指标进行对比分析。接着,从数据和方法论方面分析制约算法性能的主要因素及由此造成的误差影响。在数据方面,制约因素主要是数据精度、样本差异、标注数据量和标注规范;在方法论方面,制约因素主要包括先验几何关系、深度预测误差和数据模态等。最后,对国内外研究现状进行总结,并在数据集、评价指标和目标深度预测等方面提出了未来需要重点关注的研究方向。 展开更多
关键词 3D目标检测 基准 制约因素 误差分析 自动驾驶 图像处理 计算机视觉
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部