期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进Mask R-CNN的硬化混凝土离析程度评价 被引量:4
1
作者 任炳昱 叶钲军 +2 位作者 王栋 吴斌平 谭尧升 《水力发电学报》 CSCD 北大核心 2022年第5期93-102,共10页
水工混凝土钻孔图像中骨料的精准分割对于硬化混凝土离析评价至关重要。然而,传统的骨料图像分割方法存在精度低和泛化性能差的问题。针对上述问题,本文提出了一种改进Mask R-CNN的硬化混凝土骨料分割模型,通过在Mask R-CNN模型的主干... 水工混凝土钻孔图像中骨料的精准分割对于硬化混凝土离析评价至关重要。然而,传统的骨料图像分割方法存在精度低和泛化性能差的问题。针对上述问题,本文提出了一种改进Mask R-CNN的硬化混凝土骨料分割模型,通过在Mask R-CNN模型的主干网络中引入高效通道注意力模块(efficient channel attention,ECA)与空间注意力模块(stage attention module,SAM),实现卷积网络对通道与空间权重的自适应调整,从而提升模型对目标骨料边界与位置分布的检测性能;进一步提出硬化混凝土离析程度定量评价方法,通过量化目标骨料的面积、边界以及在高程方向上的分布,实现混凝土离析程度的定量评价。工程案例表明,所提骨料分割模型平均精度(m AP@0.5)达到了0.8752,相比未改进模型提高了4.19%,在多种复杂环境下的分割效果均优于传统骨料图像分割方法,且混凝土离析程度定量评价平均误差仅为4.85%,验证了所提方法的有效性与优越性,为混凝土离析程度科学评价提供了新的技术手段。 展开更多
关键词 硬化混凝土 Mask R-CNN 骨料分割 混凝土离析 定量评价
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部