期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Swin Transformer的森林火灾检测算法
被引量:
12
1
作者
叶铭亮
周慧英
李建军
《中南林业科技大学学报》
CAS
CSCD
北大核心
2022年第8期101-110,共10页
【目的】森林火灾常常会对人类的财产和生态多样性造成巨大损害,传统的森林火灾检测技术存在可靠性低、造价过高等不足。目前基于卷积神经网络的深度学习算法在处理图像型数据上具有准确性高、成本低、速度快等优势,但是其处理视觉要素...
【目的】森林火灾常常会对人类的财产和生态多样性造成巨大损害,传统的森林火灾检测技术存在可靠性低、造价过高等不足。目前基于卷积神经网络的深度学习算法在处理图像型数据上具有准确性高、成本低、速度快等优势,但是其处理视觉要素和物体之间关系的能力不如Transformer。因此,本研究提出一种改进Swin Transformer网络的方法应用于森林火灾检测。【方法】Transformer是一种基于自注意机制的深度神经网络,其强大的表现能力使得其能够在计算机视觉领域大放异彩。Swin Transformer提出将Transformer应用于计算机视觉任务,构建了一种名为Swin Transformer Blocks的骨干网络,并且提出了一种滑动窗口多头自注意力机制。本文结合Transformer与深度学习算法并应用于森林火灾检测领域,在Swin Transformer网络结构中对窗口自注意力机制进行改进,采用了knn自注意力提高对小块噪声的识别,使用Augmentation数据增强方法增加模型的泛化能力。【结果】数据集为自建的森林火灾图像数据集,通过旋转、裁剪、模糊以及色彩调节等数据增广的方法将300张不同环境下的森林火灾图像数据扩充到1900张图像,最后对Swin Transformer以及改进后的模型进行对比实验,改进后的算法准确率可达98.1%,bbox_mAP、bbox_mAP_50和bbox_mAP_75分别达到了66.7%、96.4%和81.3%。【结论】本文提出一种改进Swin Transformer应用于森林火灾检测的方法。研究结果表明,改进的Swin Transformer模型能够有效检测不同环境下的森林火灾。
展开更多
关键词
森林火灾
深度神经网络
Swin
Transformer
目标检测
下载PDF
职称材料
题名
基于改进Swin Transformer的森林火灾检测算法
被引量:
12
1
作者
叶铭亮
周慧英
李建军
机构
中南林业科技大学计算机与信息工程学院
出处
《中南林业科技大学学报》
CAS
CSCD
北大核心
2022年第8期101-110,共10页
基金
国家自然科学基金项目(31570627)
中南林业科技大学纵向结余经费结转项目(90102-63213035)
中南林业科技大学研究生科技创新基金项目(CX202102058)。
文摘
【目的】森林火灾常常会对人类的财产和生态多样性造成巨大损害,传统的森林火灾检测技术存在可靠性低、造价过高等不足。目前基于卷积神经网络的深度学习算法在处理图像型数据上具有准确性高、成本低、速度快等优势,但是其处理视觉要素和物体之间关系的能力不如Transformer。因此,本研究提出一种改进Swin Transformer网络的方法应用于森林火灾检测。【方法】Transformer是一种基于自注意机制的深度神经网络,其强大的表现能力使得其能够在计算机视觉领域大放异彩。Swin Transformer提出将Transformer应用于计算机视觉任务,构建了一种名为Swin Transformer Blocks的骨干网络,并且提出了一种滑动窗口多头自注意力机制。本文结合Transformer与深度学习算法并应用于森林火灾检测领域,在Swin Transformer网络结构中对窗口自注意力机制进行改进,采用了knn自注意力提高对小块噪声的识别,使用Augmentation数据增强方法增加模型的泛化能力。【结果】数据集为自建的森林火灾图像数据集,通过旋转、裁剪、模糊以及色彩调节等数据增广的方法将300张不同环境下的森林火灾图像数据扩充到1900张图像,最后对Swin Transformer以及改进后的模型进行对比实验,改进后的算法准确率可达98.1%,bbox_mAP、bbox_mAP_50和bbox_mAP_75分别达到了66.7%、96.4%和81.3%。【结论】本文提出一种改进Swin Transformer应用于森林火灾检测的方法。研究结果表明,改进的Swin Transformer模型能够有效检测不同环境下的森林火灾。
关键词
森林火灾
深度神经网络
Swin
Transformer
目标检测
Keywords
forest fire
deep neural network
Swin Transformer
object detection
分类号
S762.2 [农业科学—森林保护学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进Swin Transformer的森林火灾检测算法
叶铭亮
周慧英
李建军
《中南林业科技大学学报》
CAS
CSCD
北大核心
2022
12
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部