期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于子空间中主成分最优线性预测的高光谱波段选择
被引量:
7
1
作者
吴一全
周杨
+1 位作者
盛东慧
叶骁来
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
2018年第1期119-128,共10页
针对高光谱遥感图像的异常检测问题,为了使高光谱降维数据能更完整地保留其光谱信息,提出了基于子空间中主成分最优线性预测的波段选择方法.采用改进相关性度量的谱聚类方法将高光谱波段划分为不同的子空间,并对各子空间中的波段进行主...
针对高光谱遥感图像的异常检测问题,为了使高光谱降维数据能更完整地保留其光谱信息,提出了基于子空间中主成分最优线性预测的波段选择方法.采用改进相关性度量的谱聚类方法将高光谱波段划分为不同的子空间,并对各子空间中的波段进行主成分分析(PCA),选择主要分量作为重构目标;以子空间追踪法为搜索策略,从各子空间中选择数个波段对其重构目标进行联合最优线性预测;合并各子空间中的所选波段得到最佳波段子集.实验结果表明,该方法选择的波段子集可以较完整地重构原始数据,与原始数据以及自适应波段选择(ABS)方法、线性预测(LP)方法、最大方差主成分分析(MVPCA)方法、自相关矩阵波段选择(ACMBS)方法、组合因子最优波段选择(OCFBS)方法得到的波段子集相比,其波段子集具有更好的异常检测性能.
展开更多
关键词
遥感
高光谱图像
波段选择
主成分
线性预测
子空间追踪
谱聚类
下载PDF
职称材料
题名
基于子空间中主成分最优线性预测的高光谱波段选择
被引量:
7
1
作者
吴一全
周杨
盛东慧
叶骁来
机构
南京航空航天大学电子信息工程学院
中国科学院西安光学精密机械研究所中科院光谱成像技术重点实验室
出处
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
2018年第1期119-128,共10页
基金
国家自然科学基金(61573183)
中国科学院光谱成像重点实验室开放基金项目资助(LSIT201401)
江苏高校优势学科建设工程~~
文摘
针对高光谱遥感图像的异常检测问题,为了使高光谱降维数据能更完整地保留其光谱信息,提出了基于子空间中主成分最优线性预测的波段选择方法.采用改进相关性度量的谱聚类方法将高光谱波段划分为不同的子空间,并对各子空间中的波段进行主成分分析(PCA),选择主要分量作为重构目标;以子空间追踪法为搜索策略,从各子空间中选择数个波段对其重构目标进行联合最优线性预测;合并各子空间中的所选波段得到最佳波段子集.实验结果表明,该方法选择的波段子集可以较完整地重构原始数据,与原始数据以及自适应波段选择(ABS)方法、线性预测(LP)方法、最大方差主成分分析(MVPCA)方法、自相关矩阵波段选择(ACMBS)方法、组合因子最优波段选择(OCFBS)方法得到的波段子集相比,其波段子集具有更好的异常检测性能.
关键词
遥感
高光谱图像
波段选择
主成分
线性预测
子空间追踪
谱聚类
Keywords
remote sensing, hyperspectral image, band Selection, principal component, linear prediction, subspace pursuit, spectral clustering
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于子空间中主成分最优线性预测的高光谱波段选择
吴一全
周杨
盛东慧
叶骁来
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
2018
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部