V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for N...V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.展开更多
Nickel and sulfate co-modified CeO2-ZrO2 catalysts were prepared by sol-gel method. The catalysts were characterized by XRD, FTIR, XPS, NH3 chemisorption and NH3-SCR activity tests. The results showed that the enhance...Nickel and sulfate co-modified CeO2-ZrO2 catalysts were prepared by sol-gel method. The catalysts were characterized by XRD, FTIR, XPS, NH3 chemisorption and NH3-SCR activity tests. The results showed that the enhanced acidity of CeO2-ZrO2 catalysts by nickel and sulfate co-modification was responsible for the broadened temperature window and improved the selectivity to N2 in NH3-SCR deNOx. The introduction of nickel to CeO2-ZrO2 solid solutions resulted in more Ce3+ on surface of catalyst, leading to an in...展开更多
Increasingly stringent regulations in many countries require effective reduction and control of NOx emissions. To meet these limits, various methods have been exploited, among which the selective catalytic reduction o...Increasingly stringent regulations in many countries require effective reduction and control of NOx emissions. To meet these limits, various methods have been exploited, among which the selective catalytic reduction of NOx using ammonia as the reduc- rant (NH3-SCR) is the most favored technology. High catalytic activity, N2 selectivity and resistance to deactivation by sulfur, alkaline metals and hydrothermal conditions are the optimal properties of a successful SCR catalyst. Rare earth oxides, particularly CeO2, have been increasingly used to improve the catalytic activity and resistance to deactivation of deNOx catalysts, both modifying tradi- tional vanadium catalysts, and also developing novel catalysts, especially for low temperature applications. This review summarized the open literature concerning recent research and development progresses in the application of rare earths for NH3-SCR of NOx. Additionally, the roles of rare earths in enhancing the performance of NH3-SCR catalyst were reviewed.展开更多
MnOx-TiO2, CeO2-MnOx-TiO2 and V2O5-MnOx-TiO2 catalysts for low-temperature NH3-SCR were prepared by sol-gel method. The results showed that both cerium and vanadium prevented the transformation ofanatase TiO2 to the m...MnOx-TiO2, CeO2-MnOx-TiO2 and V2O5-MnOx-TiO2 catalysts for low-temperature NH3-SCR were prepared by sol-gel method. The results showed that both cerium and vanadium prevented the transformation ofanatase TiO2 to the mille phase. The addition of vanadium oxide induced the segregation of crystalline Mn2O3, which contributed little to low-temperature SCR and ammonia oxidation, from the MnOx-TiO2 solid solutions. However, the selectivity of the V-containing catalyst was almost 100% due to the decreased ammonia consumption and enhanced adsorption capacity of ammonia on Bronsted acid sites at relatively high temperatures. The electron-donating effect of cerium reduced the Mn^4+/Mn^3- ratio to some extent, resulting in a decreased activity for ammonia oxidation. This, in combination with the enhanced ammonia adsorption capacity by Ce^n+ as additional Lewis acid sites, endowed the Ce-doped catalyst a higher N2 selectivity than MnOx-TiO2 despite the slightly elevated light-offtemperamre for NO conversion.展开更多
CeO2 and CuOx-CeO2 supported potassium catalysts were synthesized by wetness impregnation method. The catalysts were characterized by BET, NO-TPO, NOx-TPD and soot-TPO measurements. By the decoration of potassium and ...CeO2 and CuOx-CeO2 supported potassium catalysts were synthesized by wetness impregnation method. The catalysts were characterized by BET, NO-TPO, NOx-TPD and soot-TPO measurements. By the decoration of potassium and copper, the maximum soot combustion temperature of the ceria-based catalyst decreased to 338 and 379 °C in the presence and absence of NO under a loose contact mode, re- spectively. The pronouncedly enhanced NO oxidation ability by copper introduction and NOx storage capacity by potassium modif...展开更多
Various acidic components(MOx:phosphate,sulfate,tungstate and niobate) were loaded on Ce0.75 Zr0.25 O2 powders by an impregnation method.The as-prepared catalysts were hydrothermally treated at 760 oC for 48 h in a...Various acidic components(MOx:phosphate,sulfate,tungstate and niobate) were loaded on Ce0.75 Zr0.25 O2 powders by an impregnation method.The as-prepared catalysts were hydrothermally treated at 760 oC for 48 h in air containing 10 vol.% H2 O to obtain the aged catalysts.The catalysts were characterized by X-ray diffraction,Fourier transform infrared spectroscopy,H2 programmed-reduction,NH3 adsorption and deNOx activity measurements.The results showed that,among the catalysts investigated,the phosphated Ce0.75 Zr0.25 O2 catalyst showed the highest hydrothermal stability.The remained high acidity of the phosphated catalyst with moderate redox property helped to maintain the excellent NH3-SCR activity of hydrothermally aged catalyst.Cerium tungstate led to the poor redox property of the tungstated catalyst although the acidity of catalyst was still high.The decomposition of sulfates at temperatures higher than 600 °C restrained the usage of sulfated catalysts in high temperature conditions.The overall dehydration of niobate to niobium oxides led to the low acidity of hydrothermally aged Nb2 O5-Ce0.75 Zr0.25 O2 catalyst.展开更多
基金supported by the National Natural Science Foundation of China (51372137)the National High Technology Research and Development Program of China (863 Program,2015AA034603)~~
文摘V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.
基金supported by the National Basic Research Program of China (973 Program, 2010CB732304)the National High Technology Research and Development Program of China (863 Program, 2013AA065302)the National Natural Science Foundation of China (51202126)~~
基金Project supported by the "863 Project" (2009AA06Z304 and 2009AA064801)
文摘Nickel and sulfate co-modified CeO2-ZrO2 catalysts were prepared by sol-gel method. The catalysts were characterized by XRD, FTIR, XPS, NH3 chemisorption and NH3-SCR activity tests. The results showed that the enhanced acidity of CeO2-ZrO2 catalysts by nickel and sulfate co-modification was responsible for the broadened temperature window and improved the selectivity to N2 in NH3-SCR deNOx. The introduction of nickel to CeO2-ZrO2 solid solutions resulted in more Ce3+ on surface of catalyst, leading to an in...
基金supported by National Natural Science Foundation of China(51202126)Postdoctoral Science Foundation of China(2012M520266)Strategic Emerging Industry Development Funds of Shenzhen(JCYJ20120619152738634)
文摘Increasingly stringent regulations in many countries require effective reduction and control of NOx emissions. To meet these limits, various methods have been exploited, among which the selective catalytic reduction of NOx using ammonia as the reduc- rant (NH3-SCR) is the most favored technology. High catalytic activity, N2 selectivity and resistance to deactivation by sulfur, alkaline metals and hydrothermal conditions are the optimal properties of a successful SCR catalyst. Rare earth oxides, particularly CeO2, have been increasingly used to improve the catalytic activity and resistance to deactivation of deNOx catalysts, both modifying tradi- tional vanadium catalysts, and also developing novel catalysts, especially for low temperature applications. This review summarized the open literature concerning recent research and development progresses in the application of rare earths for NH3-SCR of NOx. Additionally, the roles of rare earths in enhancing the performance of NH3-SCR catalyst were reviewed.
基金Project supported by 863 Project (2009AA06Z313,2010CB732304)
文摘MnOx-TiO2, CeO2-MnOx-TiO2 and V2O5-MnOx-TiO2 catalysts for low-temperature NH3-SCR were prepared by sol-gel method. The results showed that both cerium and vanadium prevented the transformation ofanatase TiO2 to the mille phase. The addition of vanadium oxide induced the segregation of crystalline Mn2O3, which contributed little to low-temperature SCR and ammonia oxidation, from the MnOx-TiO2 solid solutions. However, the selectivity of the V-containing catalyst was almost 100% due to the decreased ammonia consumption and enhanced adsorption capacity of ammonia on Bronsted acid sites at relatively high temperatures. The electron-donating effect of cerium reduced the Mn^4+/Mn^3- ratio to some extent, resulting in a decreased activity for ammonia oxidation. This, in combination with the enhanced ammonia adsorption capacity by Ce^n+ as additional Lewis acid sites, endowed the Ce-doped catalyst a higher N2 selectivity than MnOx-TiO2 despite the slightly elevated light-offtemperamre for NO conversion.
基金Project supported by the National High-Tech Research and Development Program (2009AA064801)the National Basic Research Program of China (2010CB732304)supported by the Ministry of Science and Technology of China
文摘CeO2 and CuOx-CeO2 supported potassium catalysts were synthesized by wetness impregnation method. The catalysts were characterized by BET, NO-TPO, NOx-TPD and soot-TPO measurements. By the decoration of potassium and copper, the maximum soot combustion temperature of the ceria-based catalyst decreased to 338 and 379 °C in the presence and absence of NO under a loose contact mode, re- spectively. The pronouncedly enhanced NO oxidation ability by copper introduction and NOx storage capacity by potassium modif...
基金supported by National Natural Science Foundation of China(51202126)Strategic Emerging Industry Development Funds of Shenzhen(JCYJ20120619152738634)
文摘Various acidic components(MOx:phosphate,sulfate,tungstate and niobate) were loaded on Ce0.75 Zr0.25 O2 powders by an impregnation method.The as-prepared catalysts were hydrothermally treated at 760 oC for 48 h in air containing 10 vol.% H2 O to obtain the aged catalysts.The catalysts were characterized by X-ray diffraction,Fourier transform infrared spectroscopy,H2 programmed-reduction,NH3 adsorption and deNOx activity measurements.The results showed that,among the catalysts investigated,the phosphated Ce0.75 Zr0.25 O2 catalyst showed the highest hydrothermal stability.The remained high acidity of the phosphated catalyst with moderate redox property helped to maintain the excellent NH3-SCR activity of hydrothermally aged catalyst.Cerium tungstate led to the poor redox property of the tungstated catalyst although the acidity of catalyst was still high.The decomposition of sulfates at temperatures higher than 600 °C restrained the usage of sulfated catalysts in high temperature conditions.The overall dehydration of niobate to niobium oxides led to the low acidity of hydrothermally aged Nb2 O5-Ce0.75 Zr0.25 O2 catalyst.