期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
融合异质网络与主题模型的方面分预测 被引量:22
1
作者 吉余岗 李依桐 石川 《计算机应用》 CSCD 北大核心 2017年第11期3201-3206,共6页
针对传统方面分预测模型只考虑内容信息而缺乏对评论网络结构的分析,提出了融合异质信息网络和主题模型构建方面分预测算法(HINToAsp)。首先,从意见短语角度构建了评论主题挖掘模型(Phrase-PLSA),有效整合评论信息和评分信息进行方面主... 针对传统方面分预测模型只考虑内容信息而缺乏对评论网络结构的分析,提出了融合异质信息网络和主题模型构建方面分预测算法(HINToAsp)。首先,从意见短语角度构建了评论主题挖掘模型(Phrase-PLSA),有效整合评论信息和评分信息进行方面主题挖掘;进而,考虑用户、评论和商品之间的结构信息,提出了在"用户评论商品"异质信息网络上的主题传播模型模型,用于刻画用户特性、商品属性;最后,基于随机游走框架有效整合内容信息和结构信息,进行精准的方面分预测。通过在大众点评(Dianping)和TripAdvisor数据集上和四元组PLSA(QPLSA)、高斯分布的情绪评估(GRAOS)模型及情绪均衡主题模型(SATM)的准确度对比实验,证明了HINToAsp算法的有效性,可以更好地用于商品的推荐系统。 展开更多
关键词 方面分预测 异质信息网络 主题模型 结构信息 推荐系统
下载PDF
基于离散粒子群优化的微博热点话题发现算法 被引量:9
2
作者 马慧芳 吉余岗 +1 位作者 李晓红 周汝南 《计算机工程》 CAS CSCD 北大核心 2016年第3期208-213,共6页
结合词项关联关系和粒子群优化(PSO)算法的特点,提出一种基于离散PSO(DPSO)的微博热点话题发现算法。通过对词语互信息及内外关联词信息的挖掘,更新传统文本表示模型,利用DPSO算法从寻优角度发现微博热点话题及简化微博聚类过程,并将聚... 结合词项关联关系和粒子群优化(PSO)算法的特点,提出一种基于离散PSO(DPSO)的微博热点话题发现算法。通过对词语互信息及内外关联词信息的挖掘,更新传统文本表示模型,利用DPSO算法从寻优角度发现微博热点话题及简化微博聚类过程,并将聚类质量评价指标作为适应度函数对聚类结果进行不断迭代优化,获得聚类结果的最优解。实验结果表明,该算法能够在大量微博中快速发现热点话题,具有较高的热点话题发现准确性及运行效率。 展开更多
关键词 微博 热点话题发现 词项关系 文本表示模型 粒子群优化
下载PDF
融合词语类别特征和语义的短文本分类方法 被引量:1
3
作者 马慧芳 周汝南 +1 位作者 吉余岗 鲁小勇 《计算机工程与科学》 CSCD 北大核心 2017年第2期399-404,共6页
针对短文本内容简短、特征稀疏等特点,提出一种新的融合词语类别特征和语义的短文本分类方法。该方法采用改进的特征选择方法从短文本中选择最能代表类别特征的词语构造特征词典,同时结合利用隐含狄利克雷分布LDA主题模型从背景知识中... 针对短文本内容简短、特征稀疏等特点,提出一种新的融合词语类别特征和语义的短文本分类方法。该方法采用改进的特征选择方法从短文本中选择最能代表类别特征的词语构造特征词典,同时结合利用隐含狄利克雷分布LDA主题模型从背景知识中选择最优主题形成新的短文本特征,在此基础上建立分类器进行分类。采用支持向量机SVM与k近邻法k-NN分类器对搜狗语料库数据集上的搜狐新闻标题内容进行分类,实验结果表明该方法对提高短文本分类的性能是有效的。 展开更多
关键词 短文本分类 隐含狄利克雷分布 词汇特征 语义特征 特征选择
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部