期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于爬山粒子群优化的移动传感网络定位算法 被引量:4
1
作者 吉小洪 魏开平 胡文杰 《计算机工程与应用》 CSCD 北大核心 2016年第5期84-88,共5页
针对蒙特卡洛定位(Monte Carlo Localization,MCL)采样效率不高,定位精度较低的问题,提出一种新的基于爬山法优化策略的移动无线传感网络定位算法HCPSO-MCL(Hill Climbing Particle Swarm Optimization-MCL),将节点定位问题转化为全局... 针对蒙特卡洛定位(Monte Carlo Localization,MCL)采样效率不高,定位精度较低的问题,提出一种新的基于爬山法优化策略的移动无线传感网络定位算法HCPSO-MCL(Hill Climbing Particle Swarm Optimization-MCL),将节点定位问题转化为全局优化问题。HCPSO-MCL算法采用基于爬山策略的混合粒子群优化算法对MCL的估计值进行修正,从而实现节点快速准确定位。实验仿真结果表明,HCPSO-MCL较之于MCL算法在定位精度上有很大改进,而且比PSO-MCL(Particle Swarm Optimization-MCL)算法有更快的收敛性。 展开更多
关键词 无线传感网络 蒙特卡洛定位 爬山粒子群算法
下载PDF
基于trie merging机制数据流滑动窗口模型的频繁树模式挖掘 被引量:4
2
作者 吉小洪 徐爱萍 《计算机应用研究》 CSCD 北大核心 2020年第7期1993-1998,共6页
因树型结构的良好表达能力,在互联网中传输的信息流越来越多以树型结构形式存储。但由于流式数据的时效性,隐含在数据流中的知识会随着时间的推移发生改变。针对数据流场景下挖掘最近时间段内的频繁子树模式的问题,提出了一种滑动窗口... 因树型结构的良好表达能力,在互联网中传输的信息流越来越多以树型结构形式存储。但由于流式数据的时效性,隐含在数据流中的知识会随着时间的推移发生改变。针对数据流场景下挖掘最近时间段内的频繁子树模式的问题,提出了一种滑动窗口模型下挖掘频繁子树模式算法——SWMiner算法,用于挖掘数据流下任意时刻窗口所有的频繁子树模式。SWMiner算法使用基于前缀树的结构来压缩存储生成的树模式,并且使用trie merging机制有效地更新子树模式的支持度。实验结果表明,SWMiner算法在滑动窗口模型中的性能优于目前现有的常用算法,能有效地挖掘最近时间段内的频繁树模式。 展开更多
关键词 TRIE树 数据流 滑动窗口 频繁树模式
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部