期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
FePt/FeRh双层薄膜的结构和磁性 被引量:2
1
作者 赵湖钧 朱艳艳 +7 位作者 曾道富 李鱼辉 郑富 裴文利 江川元太 吉村哲 齐藤准 李国庆 《科学通报》 EI CAS CSCD 北大核心 2015年第13期1180-1190,共11页
用磁控溅射法,在加热到400℃的Mg O(001)基片上,得到25 nm厚的A1相Fe Pt软磁薄膜,经过热处理使之发生不同程度的A1→L10相转变,在450℃继续生长50 nm厚的Fe Rh,并在相同温度连续保温24 h,使Fe Rh层转变为有序的B2相,得到具有热致反铁磁... 用磁控溅射法,在加热到400℃的Mg O(001)基片上,得到25 nm厚的A1相Fe Pt软磁薄膜,经过热处理使之发生不同程度的A1→L10相转变,在450℃继续生长50 nm厚的Fe Rh,并在相同温度连续保温24 h,使Fe Rh层转变为有序的B2相,得到具有热致反铁磁-铁磁转变性质的Fe Pt/Fe Rh双层复合磁性薄膜.结果表明,Fe Pt层和Fe Rh层都有(001)取向;在生长Fe Rh层之前,如果Fe Pt层没有或者未完全转变为硬磁的L10相,可以使Fe Rh层的反铁磁-铁磁转变温度由100℃提高到200℃;沿垂直于膜面的方向施加磁场,双层薄膜的室温磁化曲线呈方形,矫顽力可达到7.4 k Oe;升温使Fe Rh层转变为软铁磁性,反磁化过程的磁化强度在2个特征磁场附近发生跳跃,显示双层膜中形成了磁性弹簧,矫顽力可下降一半以上.Fe Rh反铁磁-铁磁转变温度升高的原因在于有适量的Pt从Fe Pt层析出并扩散进入Fe Rh层,用于制作热辅助复合垂直磁存储介质,有助于提高稳定性. 展开更多
关键词 FeRh/FePt双层薄膜 反铁磁-铁磁转变 热处理 矫顽力
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部