在处理入侵检测中的大规模数据时,冗余和不相关的特征数据长期造成网络数据流量分类问题,这种特征会降低分类效率和精度,并影响系统的实时检测率。该文提出了一种新的基于互信息的特征选择算法(NMIFS),该算法能处理线性和非线性相关的...在处理入侵检测中的大规模数据时,冗余和不相关的特征数据长期造成网络数据流量分类问题,这种特征会降低分类效率和精度,并影响系统的实时检测率。该文提出了一种新的基于互信息的特征选择算法(NMIFS),该算法能处理线性和非线性相关的特征数据。在数据预处理的过程中,使用该算法选择出最优特征,然后结合常见的最小二乘支持向量机算法(LSSVM)对数据进行分类。采用入侵检测标准数据集KDD Cup 99对模型进行性能评估,对比其他新型的优化算法,结果表明NMIFS算法更有助于LSSVM算法实现更高的分类精度和效率,降低计算复杂度,同时提高模型的检测率。展开更多
文摘在处理入侵检测中的大规模数据时,冗余和不相关的特征数据长期造成网络数据流量分类问题,这种特征会降低分类效率和精度,并影响系统的实时检测率。该文提出了一种新的基于互信息的特征选择算法(NMIFS),该算法能处理线性和非线性相关的特征数据。在数据预处理的过程中,使用该算法选择出最优特征,然后结合常见的最小二乘支持向量机算法(LSSVM)对数据进行分类。采用入侵检测标准数据集KDD Cup 99对模型进行性能评估,对比其他新型的优化算法,结果表明NMIFS算法更有助于LSSVM算法实现更高的分类精度和效率,降低计算复杂度,同时提高模型的检测率。