期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MTCN-Informer的铁矿球团工艺预测模型
1
作者 廖雪超 朱晨辉 +2 位作者 赵昊裔 向桂宏 刘宗宇 《计算机技术与发展》 2024年第9期188-194,共7页
成品球团流量的预测是生产过程的关键,它决定着整个生产的效率和产量。铁矿球团链箅机—回转窑是生产铁矿石制备高品质铁合金的重要工艺过程之一,具有大时滞、参数庞杂、耦合关系复杂等特点,且成品球团流量波动剧烈,使球团流量难以预测... 成品球团流量的预测是生产过程的关键,它决定着整个生产的效率和产量。铁矿球团链箅机—回转窑是生产铁矿石制备高品质铁合金的重要工艺过程之一,具有大时滞、参数庞杂、耦合关系复杂等特点,且成品球团流量波动剧烈,使球团流量难以预测。为此,该文使用移动平均滤波器来平滑波动的数据,互信息法对庞杂的参数做特征选择,再利用基于自注意力机制的Informer球团流量预测模型,其降低传统自注意力机制的时间复杂度,提高了模型训练效率。同时,针对Informer模型的概率稀疏自注意力机制难以把握长时间序列波动的问题,通过TCN时间卷积网络来提取长时间序列的扩展信息依赖,同时结合Informer编码解码网络来处理上下文的信息,从而完成球团流量的精确预测。通过对工厂实际数据进行实验分析可知,与循环神经网络这类传统的深度学习模型相比,所提集成模型在预测精度、稳定性方面均为最优。 展开更多
关键词 球团流量预测 特征选择 时间卷积网络 编码解码网络 自注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部