堆石坝变形监测数据是一种时间序列数据,可以用时序预测模型挖掘其规律并进行预测。本文利用时序预测模型提出一种堆石坝变形预测方法,该方法首先采用时间序列分解(seasonal-trend decomposition procedure based on loess,STL)将堆石...堆石坝变形监测数据是一种时间序列数据,可以用时序预测模型挖掘其规律并进行预测。本文利用时序预测模型提出一种堆石坝变形预测方法,该方法首先采用时间序列分解(seasonal-trend decomposition procedure based on loess,STL)将堆石坝变形监测数据分解为趋势项、周期项和不规则波动三部分,再使用经验模态分解(empirical mode decomposition,EMD)对不规则波动平稳化处理,最后利用长短期记忆网络(long short-term memory,LSTM)预测分解后的序列,并利用贝叶斯优化方法进行超参数优化。为评估该方法的预测效果,以水布垭面板堆石坝为例,通过控制训练时长、预测时长、离群值数目等变量进行多组仿真实验,并与其他时序预测模型对比。结果表明该方法预测精度较高,适用性较广,对于堆石坝的性状评估具有一定的应用价值。展开更多
文摘堆石坝变形监测数据是一种时间序列数据,可以用时序预测模型挖掘其规律并进行预测。本文利用时序预测模型提出一种堆石坝变形预测方法,该方法首先采用时间序列分解(seasonal-trend decomposition procedure based on loess,STL)将堆石坝变形监测数据分解为趋势项、周期项和不规则波动三部分,再使用经验模态分解(empirical mode decomposition,EMD)对不规则波动平稳化处理,最后利用长短期记忆网络(long short-term memory,LSTM)预测分解后的序列,并利用贝叶斯优化方法进行超参数优化。为评估该方法的预测效果,以水布垭面板堆石坝为例,通过控制训练时长、预测时长、离群值数目等变量进行多组仿真实验,并与其他时序预测模型对比。结果表明该方法预测精度较高,适用性较广,对于堆石坝的性状评估具有一定的应用价值。