期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的微藻自动检测系统研究
1
作者 向睿捷 刘浩 +5 位作者 路珍 肖泽宇 刘海鹏 王寅初 彭晓 严伟 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第1期177-189,共13页
目的 微藻养殖产业规模巨大,在养殖过程中微藻易受杂菌和其他污染物的影响,因此需要定期对微藻进行检测,以确定其生长情况。现有的光学显微成像法和光谱分析法对实验人员、实验设备及场地的要求较高,无法做到实时快速检测。为了实现实... 目的 微藻养殖产业规模巨大,在养殖过程中微藻易受杂菌和其他污染物的影响,因此需要定期对微藻进行检测,以确定其生长情况。现有的光学显微成像法和光谱分析法对实验人员、实验设备及场地的要求较高,无法做到实时快速检测。为了实现实时快速检测,需要一套检测要求低、速度快的实时微藻检测系统。方法 本文开发了一种基于深度学习的微藻检测系统,通过搭建一套基于明场成像的显微成像设备,使用采集的图像训练基于YOLOv3的神经网络,并将训练好的神经网络部署到微型计算机,从而实现了实时便携微藻检测。本文对特征提取网络进行改进,包括引入跨区域残差连接机制和注意力选择机制,另外还将优化器改为Adam优化器,使用多阶段多方法组合策略。结果 加载跨区域残差连接机制时最高平均精度(mAP)值为0.92。通过与人工结果进行对比,得到检测误差为2.47%。结论 该系统能够实现微藻实时便携检测,提供较为准确的检测结果,可以应用于微藻养殖中的定期检测。 展开更多
关键词 微藻检测术 明场显微术 深度学习 目标识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部