期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
平行板电容器动态问题典型考题例析
1
作者 向荣武 《数理天地(高中版)》 2023年第10期25-26,共2页
平行板电容器的动态变化问题是高考中出现频率比较高的试题类型,对学生的综合分析能力有较高要求.本文通过对电压不变型、电荷量不变型、综合型三种平行板电容器动态问题的分析,归纳出解题的思路和方法,方便学生复习备考.
关键词 高中物理 平行板电容器 解题
下载PDF
颈内动脉持续输注丙泊酚构建肌松兔模型的药代动力学变化
2
作者 尹红 谭媛 +2 位作者 唐之音 向荣武 朱俊超 《中国组织工程研究》 CAS 北大核心 2015年第27期4394-4399,共6页
背景:经动脉选择性脑内给药方法是现阶段提高脑内药物浓度,降低药物对其他系统功能影响的有效方法之一。目的:建立颈内动脉持续输注丙泊酚构建肌松兔模型,分析丙泊酚药物浓度变化规律。方法:颈内动脉置管进行丙泊酚恒速持续输注建立兔... 背景:经动脉选择性脑内给药方法是现阶段提高脑内药物浓度,降低药物对其他系统功能影响的有效方法之一。目的:建立颈内动脉持续输注丙泊酚构建肌松兔模型,分析丙泊酚药物浓度变化规律。方法:颈内动脉置管进行丙泊酚恒速持续输注建立兔颈内动脉持续输注丙泊酚肌松兔模型,在不同时点取得两侧颈内动静脉血及两侧脑组织样本,应用高效液相荧光法检测药物浓度,然后将所得数据进行数学转换,拟合处理,统计学回归分析药代动力学特点。结果与结论:高效液相色谱荧光法测定丙泊酚浓度方法可行,系统稳定可靠。颈内动脉持续输注丙泊酚药物浓度增长率分析,数据分布呈对数正态分布图形,属于非指数动力学模型,即改良的对数正态分布模型,f(x)=1/k(2π)1/2σx)e-(Inx-u)2/2σ2,其中σ代表脑内药物浓度变化波动性的稳定性,与脑组织药物摄取和脑循环等多种因素有关的综合变量。说明颈内动脉持续输注丙泊酚药代动力学模型属于对数正态分布函数,属于非指数函数动力学模型。两侧脑内浓度随时间的变化规律遵循对数正态分布函数规律。 展开更多
关键词 二异丙酚 肌松弛 色谱法 高压液相 药代动力学 实验动物 肌肉肌腱损伤动物模型 颈内动脉 丙泊酚 输注 对数正态分布 高效液相色谱
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部