期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于指数移动平均知识蒸馏的神经网络低比特量化方法
被引量:
2
1
作者
吕君环
许柯
王东
《模式识别与人工智能》
CSCD
北大核心
2021年第12期1143-1151,共9页
目前存储和计算成本严重阻碍深度神经网络应用和推广,而神经网络量化是一种有效的压缩方法.神经网络低比特量化存在的显著困难是量化比特数越低,网络分类精度也越低.为了解决这一问题,文中提出基于指数移动平均知识蒸馏的神经网络低比...
目前存储和计算成本严重阻碍深度神经网络应用和推广,而神经网络量化是一种有效的压缩方法.神经网络低比特量化存在的显著困难是量化比特数越低,网络分类精度也越低.为了解决这一问题,文中提出基于指数移动平均知识蒸馏的神经网络低比特量化方法.首先利用少量图像进行自适应初始化,训练激活和权重的量化步长,加快量化网络收敛.再引入指数移动平均(EMA)知识蒸馏的思想,利用EMA对蒸馏损失和任务损失进行归一化,指导量化网络训练.在ImageNet、CIFAR-10数据集上的分类任务表明,文中方法可获得接近或超过全精度网络的性能.
展开更多
关键词
深度学习
网络量化
知识蒸馏
模型压缩
下载PDF
职称材料
题名
基于指数移动平均知识蒸馏的神经网络低比特量化方法
被引量:
2
1
作者
吕君环
许柯
王东
机构
北京交通大学信息科学研究所
北京交通大学现代信息科学与网络技术北京市重点实验室
出处
《模式识别与人工智能》
CSCD
北大核心
2021年第12期1143-1151,共9页
基金
国家重点研发计划项目(No.2019YFB2204200)
中央高校基本科研业务费项目(No.2020JBM020)
北京市自然科学基金项目(No.4202063)资助。
文摘
目前存储和计算成本严重阻碍深度神经网络应用和推广,而神经网络量化是一种有效的压缩方法.神经网络低比特量化存在的显著困难是量化比特数越低,网络分类精度也越低.为了解决这一问题,文中提出基于指数移动平均知识蒸馏的神经网络低比特量化方法.首先利用少量图像进行自适应初始化,训练激活和权重的量化步长,加快量化网络收敛.再引入指数移动平均(EMA)知识蒸馏的思想,利用EMA对蒸馏损失和任务损失进行归一化,指导量化网络训练.在ImageNet、CIFAR-10数据集上的分类任务表明,文中方法可获得接近或超过全精度网络的性能.
关键词
深度学习
网络量化
知识蒸馏
模型压缩
Keywords
Deep Learning
Network Quantization
Knowledge Distillation
Model Compression
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于指数移动平均知识蒸馏的神经网络低比特量化方法
吕君环
许柯
王东
《模式识别与人工智能》
CSCD
北大核心
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部