A time-dependent mild-slope equation for the extension of the classic mild-slope equation of Berkhoff is developed for the interactions of large ambient currents and waves propagating over an uneven bottom, using a Ha...A time-dependent mild-slope equation for the extension of the classic mild-slope equation of Berkhoff is developed for the interactions of large ambient currents and waves propagating over an uneven bottom, using a Hamiltonian formulation for irrotational motions. The bottom topography consists of two components the slowly varying component which satisfies the mild-slope approximation, and the fast varying component with wavelengths on the order of the surface wavelength but amplitudes which scale as a small parameter describing the mild-slope condition. The theory is more widely applicable and contains as special cases the following famous mild-slope type equations: the classical mild-Slope equation, Kirby's extended mild-slope equation with current, and Dingemans's mild-slope equation for rippled bed. Finally, good agreement between the classic experimental data concerning Bragg reflection and the present numerical results is observed.展开更多
基金This project was supported by the National Outstanding Youth Science Foundation of China under contract! No. 49825161.
文摘A time-dependent mild-slope equation for the extension of the classic mild-slope equation of Berkhoff is developed for the interactions of large ambient currents and waves propagating over an uneven bottom, using a Hamiltonian formulation for irrotational motions. The bottom topography consists of two components the slowly varying component which satisfies the mild-slope approximation, and the fast varying component with wavelengths on the order of the surface wavelength but amplitudes which scale as a small parameter describing the mild-slope condition. The theory is more widely applicable and contains as special cases the following famous mild-slope type equations: the classical mild-Slope equation, Kirby's extended mild-slope equation with current, and Dingemans's mild-slope equation for rippled bed. Finally, good agreement between the classic experimental data concerning Bragg reflection and the present numerical results is observed.