输电线路航拍图像存在背景复杂多变、检测目标占比较小的问题。针对部分图像属于阴影、模糊等视觉信息较差的困难样本,在特征融合角度的基础上,使用通道注意力使得模型更加关注复杂背景下的关键特征提取区域;基于自适应空间特征融合(Ada...输电线路航拍图像存在背景复杂多变、检测目标占比较小的问题。针对部分图像属于阴影、模糊等视觉信息较差的困难样本,在特征融合角度的基础上,使用通道注意力使得模型更加关注复杂背景下的关键特征提取区域;基于自适应空间特征融合(Adaptively Spatial Feature Fusion,ASFF)机制使得浅层和深层的特征图更合理地融合;对检测模型的损失函数进行改进,解决损失函数无法准确反映真实框与预测框重合度大小的问题。在自建的金具目标检测数据集上进行实验,实验结果表明,所提出的改进算法在原始YOLOx-S(You Only Look Once x-S)基础上获得了5.15%的检测精度提升,召回率提高了1.62%,并且针对小目标、易漏检和错检目标的检测有了明显改善,体现了在输电线路上金具目标检测的优越性和实用性。展开更多
文摘输电线路航拍图像存在背景复杂多变、检测目标占比较小的问题。针对部分图像属于阴影、模糊等视觉信息较差的困难样本,在特征融合角度的基础上,使用通道注意力使得模型更加关注复杂背景下的关键特征提取区域;基于自适应空间特征融合(Adaptively Spatial Feature Fusion,ASFF)机制使得浅层和深层的特征图更合理地融合;对检测模型的损失函数进行改进,解决损失函数无法准确反映真实框与预测框重合度大小的问题。在自建的金具目标检测数据集上进行实验,实验结果表明,所提出的改进算法在原始YOLOx-S(You Only Look Once x-S)基础上获得了5.15%的检测精度提升,召回率提高了1.62%,并且针对小目标、易漏检和错检目标的检测有了明显改善,体现了在输电线路上金具目标检测的优越性和实用性。