文摘随着Web 2.0和社交网络的发展,补充学术成果评价的Altmetrics指标应运而生,已有研究表明Altmetrics指标与被引频次之间存在相关性,但集成Altmetrics指标的论文高被引预测研究较少。因此,基于引用理论,将Altemetrics指标与学术层面指标相结合,构建论文高被引预测的指标体系;选取ESI高被引论文榜单,获取2022年4月经济与商业学科高被引论文合集,由此从Web of Science数据库获取论文集相关的学术层面数据,并从Altmetric LLP平台获取论文集相关的Altmetrics指标数据;经过数据清洗和预处理,共得到27953篇论文数据,对比3种常用机器学习算法的论文高被引预测结果,得到最优的预测模型。研究结果表明:相较于仅使用学术层面指标,引入Altmetrics指标的论文高被引预测效果更优;Altmetrics指标中的在线阅读平台读者数对论文被引频次的影响最大,随后是学术层面指标中的期刊被引半衰期、论文首次被引两年内被引频次、一作总被引频次。研究可以为探究论文高被引的影响因素及其影响程度,完善学术成果的评价体系提供理论依据。