期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自适应特征融合和注意力机制的变电设备红外图像识别
1
作者 王媛彬 吴冰超 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第9期3749-3756,共8页
针对变电设备红外图像复杂背景下多目标、小目标及遮挡目标识别效果差的问题,该文提出一种基于中心点网络(CenterNet)的变电设备红外图像识别方法。通过将自适应特征融合模块(ASFF)和特征金字塔(FPN)相结合,构建ASFF+FPN结构的特征融合... 针对变电设备红外图像复杂背景下多目标、小目标及遮挡目标识别效果差的问题,该文提出一种基于中心点网络(CenterNet)的变电设备红外图像识别方法。通过将自适应特征融合模块(ASFF)和特征金字塔(FPN)相结合,构建ASFF+FPN结构的特征融合网络,增强了模型对多目标和小目标的跨尺度特征融合能力,排除背景信息;针对网络对遮挡目标特征捕捉能力差的问题,在特征融合网络中添加全局注意力机制,增强目标显著度;为实现模型轻量化,引入深度可分离卷积,减少参数量和推理时间;最后,通过引入分布焦点损失函数,克服了原损失函数对遮挡目标敏感性差的问题,提升了模型收敛速度和识别精度。在包含7种红外变电设备图像的自建数据集上进行测试。实验表明该算法与原始算法相比,识别精度提升了3.55%,达到了95.19%,模型参数量仅为32.52M,与4种主流目标识别算法对比,该算法在识别精度和算法复杂度上具有明显优势。 展开更多
关键词 变电设备 红外图像识别 中心点网络 自适应特征融合 注意力机制
下载PDF
矿井图像超分辨率重建研究
2
作者 王媛彬 刘佳 +1 位作者 郭亚茹 吴冰超 《工矿自动化》 CSCD 北大核心 2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。... 受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。 展开更多
关键词 矿井图像 超分辨率重建 超分辨率生成对抗网络 多尺度密集通道注意力残差块 高效通道注意力模块 深度可分离卷积 纹理损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部