Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal-insulator transition properties of the vanadium dioxide t...Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal-insulator transition properties of the vanadium dioxide thin films were inves- tigated by X-ray diffraction, X-ray photoelectron spectroscopy, and a spectrometer. It is found that the preferred orientation of the vanadium dioxide changes from (111) to (011 ) with increasing thickness of the vanadium thin film after rapid thermal annealing. The vanadium dioxide thin films exhibit an obvious metal-insulator transition with increasing temperature, and the phase transition temperature decreases as the film thickness increases. The transition shows hysteretic behaviors, and the hysteresis width decreases as the film thickness increases due to the higher concentration carriers resulted from the uncompleted lattice. The fabrication of vanadium dioxide thin films with higher concentration carriers will facilitate the nature study of the metal-insulator transition.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61101055) the Research Fund for the Doctoral Program of HigherEducation,China(Grant No.20100032120029)
文摘Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal-insulator transition properties of the vanadium dioxide thin films were inves- tigated by X-ray diffraction, X-ray photoelectron spectroscopy, and a spectrometer. It is found that the preferred orientation of the vanadium dioxide changes from (111) to (011 ) with increasing thickness of the vanadium thin film after rapid thermal annealing. The vanadium dioxide thin films exhibit an obvious metal-insulator transition with increasing temperature, and the phase transition temperature decreases as the film thickness increases. The transition shows hysteretic behaviors, and the hysteresis width decreases as the film thickness increases due to the higher concentration carriers resulted from the uncompleted lattice. The fabrication of vanadium dioxide thin films with higher concentration carriers will facilitate the nature study of the metal-insulator transition.