期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进DETR的高分辨率遥感影像建筑物检测方法
1
作者 吴奇鸿 张斌 +2 位作者 段功豪 郭昶 王磊 《遥感信息》 CSCD 北大核心 2024年第1期146-156,共11页
针对高分辨率遥感影像中建筑目标较小和背景信息冗余带来的挑战,提出了一种称为FE-DETR(feature enhancement-detection with transformer)的端到端目标检测算法。首先,利用拼接融合模块(concatenation fusion module,CFM)融合不同尺度... 针对高分辨率遥感影像中建筑目标较小和背景信息冗余带来的挑战,提出了一种称为FE-DETR(feature enhancement-detection with transformer)的端到端目标检测算法。首先,利用拼接融合模块(concatenation fusion module,CFM)融合不同尺度的特征层,缓解小建筑目标特征缺失问题;其次,使用全局通道注意力(global channel attention,GCA)模块细化融合后的特征。具体来说,该模块通过构建通道间的关系矩阵,提高模型对目标的感知能力,有效缓解复杂背景信息带来的干扰。最后,在WCH(Wuhan caidian house)、EA(east Asia)和CBC(city building of China)数据集上评估该算法的检测性能。实验结果表明,所提出的改进算法在上述3个数据集上AP_(50)分别提高了0.8%、0.6%和0.6%,验证了该算法的有效性。 展开更多
关键词 建筑物检测 高分辨率 特征融合 全局通道注意力 DETR
下载PDF
RCSA-YOLO:改进YOLOv8的SAR舰船实例分割
2
作者 王磊 张斌 吴奇鸿 《计算机工程与应用》 CSCD 北大核心 2024年第18期103-113,共11页
针对合成孔径雷达(synthetic aperture radar,SAR)图像中背景复杂、目标小和尺度变化大等导致分割精度低的问题,提出了一种基于改进YOLOv8的SAR图像舰船实例分割算法RCSA-YOLO。利用结构重参数技术设计特征提取模块RepBlock,用以替换原... 针对合成孔径雷达(synthetic aperture radar,SAR)图像中背景复杂、目标小和尺度变化大等导致分割精度低的问题,提出了一种基于改进YOLOv8的SAR图像舰船实例分割算法RCSA-YOLO。利用结构重参数技术设计特征提取模块RepBlock,用以替换原网络中的C2f模块,增强网络的特征提取和特征表达能力,有效过滤了复杂背景噪声的干扰。使用基于内容感知的特征重组模块(content-aware reassembly of features,CARAFE)替换最近邻上采样方法,有效缓解了小目标信息丢失现象,提升了分割精细化程度。使用可切换空洞卷积(switchable atrous convolution,SAC)进行下采样操作,动态调整感受野大小,使模型具备更强的多尺度适应能力,确保了在不同尺寸舰船目标上的分割精度。在HRSID数据集上的实验结果表明,提出的算法可以将YOLOv8模型的AP_(50)值从87.7%提高到90.7%,较原算法提高了3个百分点。与主流的实例分割算法对比,SAR舰船实例分割精度也明显提升,证明了RCSA-YOLO的有效性。 展开更多
关键词 合成孔径雷达 结构重参数化 上采样 可切换空洞卷积
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部