研究基于交互及内容数据发现交往密切的交互社区,以及这些社区如何随时间发展变化,对于网络营销、内容推荐等应用具有重要意义。已有的基于内容与链接分析的混合模型大都未能对交互行为中广泛存在、且显著影响社区结构的时序信息进行统...研究基于交互及内容数据发现交往密切的交互社区,以及这些社区如何随时间发展变化,对于网络营销、内容推荐等应用具有重要意义。已有的基于内容与链接分析的混合模型大都未能对交互行为中广泛存在、且显著影响社区结构的时序信息进行统一建模分析。基于贝叶斯图模型,提出了一种可综合考虑交互信息、网络结构以及交互行为时间信息的社区发现模型COT(community over time),可用于从在线社交网络的交互数据中发现具有特定主题倾向及周期性行为模式的动态交互社区。模型采用Gibbs采样进行贝叶斯统计推断,通过在新浪微博真实数据集上的实验验证,可以有效应用于在线社交网络中并取得较高的精细度和可解释性。展开更多
文摘研究基于交互及内容数据发现交往密切的交互社区,以及这些社区如何随时间发展变化,对于网络营销、内容推荐等应用具有重要意义。已有的基于内容与链接分析的混合模型大都未能对交互行为中广泛存在、且显著影响社区结构的时序信息进行统一建模分析。基于贝叶斯图模型,提出了一种可综合考虑交互信息、网络结构以及交互行为时间信息的社区发现模型COT(community over time),可用于从在线社交网络的交互数据中发现具有特定主题倾向及周期性行为模式的动态交互社区。模型采用Gibbs采样进行贝叶斯统计推断,通过在新浪微博真实数据集上的实验验证,可以有效应用于在线社交网络中并取得较高的精细度和可解释性。