采用数值方法研究管轴与转轴正交的、匀角速度旋转管道内流动沸腾的流动和传热过程,建立物理模型和数学模型,基于流体体积多相流模型和Realizable k-ε(RKE)湍流模型,结合用户定义函数(user defined function,UDF)添加汽、液质能源项,...采用数值方法研究管轴与转轴正交的、匀角速度旋转管道内流动沸腾的流动和传热过程,建立物理模型和数学模型,基于流体体积多相流模型和Realizable k-ε(RKE)湍流模型,结合用户定义函数(user defined function,UDF)添加汽、液质能源项,求解汽液相变过程中的传热传质。结果显示,旋转管道内核态沸腾开始点(onset of nucleate boiling,ONB)发生时的壁面过热度与静止管道差别显著。随着管道转速的提高,ONB分布逐渐远离管道入口端。管道流动沸腾汽液两相流型受热载荷与旋转载荷的耦合影响,任意载荷的增强都会使流型向紊乱趋势发展。根据汽液两相流动及传热特性,分析了发生以上现象的原因。展开更多
文摘采用数值方法研究管轴与转轴正交的、匀角速度旋转管道内流动沸腾的流动和传热过程,建立物理模型和数学模型,基于流体体积多相流模型和Realizable k-ε(RKE)湍流模型,结合用户定义函数(user defined function,UDF)添加汽、液质能源项,求解汽液相变过程中的传热传质。结果显示,旋转管道内核态沸腾开始点(onset of nucleate boiling,ONB)发生时的壁面过热度与静止管道差别显著。随着管道转速的提高,ONB分布逐渐远离管道入口端。管道流动沸腾汽液两相流型受热载荷与旋转载荷的耦合影响,任意载荷的增强都会使流型向紊乱趋势发展。根据汽液两相流动及传热特性,分析了发生以上现象的原因。