传统的红外弱小目标检测算法一般采用DSP(digital signal processing)处理器实现,算法复杂且实时性差,本文提出了一种基于FPGA(field programmable gate array)的自适应阈值的FAST(features from accelerated segment test)算法对红外...传统的红外弱小目标检测算法一般采用DSP(digital signal processing)处理器实现,算法复杂且实时性差,本文提出了一种基于FPGA(field programmable gate array)的自适应阈值的FAST(features from accelerated segment test)算法对红外弱小目标进行检测,利用FPGA并行处理的特点,采用流水线设计实现了算法的硬件加速。改进的自适应阈值方法可以根据不同的环境生成合适的阈值,避免了由于阈值选择不当造成的红外弱小目标的丢失或冗余。最后采用4组不同的实测红外图像进行实验,结果表明:该算法能实时地检测出红外图像中的弱小目标,并且能够取得较高的检测率和较低的虚警率,满足实时性和有效性的要求。展开更多
文摘传统的红外弱小目标检测算法一般采用DSP(digital signal processing)处理器实现,算法复杂且实时性差,本文提出了一种基于FPGA(field programmable gate array)的自适应阈值的FAST(features from accelerated segment test)算法对红外弱小目标进行检测,利用FPGA并行处理的特点,采用流水线设计实现了算法的硬件加速。改进的自适应阈值方法可以根据不同的环境生成合适的阈值,避免了由于阈值选择不当造成的红外弱小目标的丢失或冗余。最后采用4组不同的实测红外图像进行实验,结果表明:该算法能实时地检测出红外图像中的弱小目标,并且能够取得较高的检测率和较低的虚警率,满足实时性和有效性的要求。