地面观测提供空间点的浓度信息,三维化学模式提供网格面的浓度信息,两者在进行对比验证或同化融合时会因为空间尺度不匹配引入误差,即观测代表性误差。本研究将大气污染地面国控监测站与区县监测站结合起来,获得了京津冀地区高密度地面...地面观测提供空间点的浓度信息,三维化学模式提供网格面的浓度信息,两者在进行对比验证或同化融合时会因为空间尺度不匹配引入误差,即观测代表性误差。本研究将大气污染地面国控监测站与区县监测站结合起来,获得了京津冀地区高密度地面观测数据,利用该数据首次对京津冀地区6项常规大气污染物(PM_(2.5)、PM_(10)、SO_2、NO_2、CO和O_3)的地面观测代表性误差进行了客观估计,并与Elbern et al.(2007)方法估计的代表性误差进行了对比。结果发现:两种方法对京津冀地区NO_2地面观测代表性误差估计非常接近,但Elbern et al.(2007)方法显著低估了SO_2、CO和O_3地面观测的代表性误差。在此基础上,我们对Elbern et al.(2007)方法及其误差特征参数进行了本地化修正,并增加了PM_(2.5)和PM_(10)的代表性误差特征参数,建立了京津冀大气污染地面观测代表性误差的客观估计方法。展开更多
文摘地面观测提供空间点的浓度信息,三维化学模式提供网格面的浓度信息,两者在进行对比验证或同化融合时会因为空间尺度不匹配引入误差,即观测代表性误差。本研究将大气污染地面国控监测站与区县监测站结合起来,获得了京津冀地区高密度地面观测数据,利用该数据首次对京津冀地区6项常规大气污染物(PM_(2.5)、PM_(10)、SO_2、NO_2、CO和O_3)的地面观测代表性误差进行了客观估计,并与Elbern et al.(2007)方法估计的代表性误差进行了对比。结果发现:两种方法对京津冀地区NO_2地面观测代表性误差估计非常接近,但Elbern et al.(2007)方法显著低估了SO_2、CO和O_3地面观测的代表性误差。在此基础上,我们对Elbern et al.(2007)方法及其误差特征参数进行了本地化修正,并增加了PM_(2.5)和PM_(10)的代表性误差特征参数,建立了京津冀大气污染地面观测代表性误差的客观估计方法。